Adding \& Subtracting Radicals Part 2

PRE-CALCULUS 11
 ABSOLUTE VALUE \& RADICALS ADDING \& SUBTRACTING RADICALS PART 2

A. Definitions

1. radical: a mathematical symbol representing a root.
2. like radicals: terms with the same index and the same radicand.

$$
2 x \sqrt[3]{5 y^{2}} \neq 7 x \sqrt[3]{5 y^{2}}
$$

B. Adding \& Subtracting Radicals

1. Simplify the following expressions.
a) $3 \sqrt{18}-2 \sqrt{50}$
$3 \sqrt{99} \cdot \sqrt{2}-2 \sqrt{25} \cdot \sqrt{2}$
$9 \sqrt{2}-10 \sqrt{2}$
$=-\sqrt{2}$
b) $2 \sqrt{75}-\sqrt{81}+\sqrt{27}+3 \sqrt{4}$ $2 \sqrt{(25)} \cdot \sqrt{3}-\sqrt{81}+\sqrt{(9)} \cdot \sqrt{3}+3 \sqrt{54}$

$=-3+13 \sqrt{3}$
c) $\sqrt[3]{16}-2 \sqrt[3]{81}+5 \sqrt[3]{2}-\sqrt[3]{24}$

$$
\begin{aligned}
& \sqrt[3]{(8)} \cdot \sqrt[3]{2}-2 \sqrt[3]{27} \cdot \sqrt[3]{3}+5 \sqrt[3]{2}-\sqrt[3]{(8)} \cdot \sqrt[3]{3} \\
& =-8 \sqrt[3]{3})+5 \sqrt[3]{2}-2 \sqrt[3]{3}+7 \sqrt[3]{2}
\end{aligned}
$$

d) 5

$$
\begin{aligned}
& 5 \sqrt{x}+3 \sqrt{x}-4 \sqrt{x}, x \geq 0 \\
& =4 \sqrt{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \begin{array}{l}
\sqrt[3]{24 y}-\sqrt[3]{3 y}+\sqrt[3]{81 y}, y \in R \\
\sqrt[3]{8} \cdot \sqrt[3]{3 y}-\sqrt[3]{3 y}+\sqrt[3]{27} \cdot \sqrt[3]{3 y} \\
2 \sqrt[3]{3 y}-\sqrt[3]{3 y}+3 \sqrt[3]{3 y} \\
=4 \sqrt[3]{3 y}
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) } \sqrt[4]{81 m^{3} n^{5}}-\sqrt[4]{16 m^{3} n^{5}}, m \& n \geq 0 \\
& \sqrt[4]{80} \cdot \sqrt[4]{n^{4}} \cdot \sqrt[4]{m^{3} n}-\sqrt[4]{5_{6}} \cdot \sqrt[4]{n^{4}} \cdot \sqrt[4]{m^{3} n} \\
& 3 n^{4} \sqrt{m^{3} n}-2 n^{4} \sqrt{m^{3} n} \\
& =n^{4} \sqrt[4]{m^{3} n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { j) } 5 \sqrt{8 x^{3}}+4 y \sqrt{75 y^{3}}-2 \sqrt{27 y^{5}}-3 x \sqrt{50 x}, x \& y \geq 0 \\
& 5 \sqrt{(4)} \cdot \sqrt{x^{2}} \cdot \sqrt{2 x}+4 y \sqrt{85} \cdot \sqrt{y^{2}} \cdot \sqrt{3 y}-2 \sqrt{99} \cdot \sqrt{4^{4}} \cdot \sqrt{3 y}-3 x \sqrt{2^{5}} \cdot \sqrt{2 x} \\
& 10 x \sqrt{2 x}+20 y^{2} \sqrt{3 y}-6 y^{2} \sqrt{3 y}-15 x \sqrt{2 x} \\
& =-5 x \sqrt{2 x}+14 y^{2} \sqrt{3 y}
\end{aligned}
$$

2. Identify the values of the variables for which each radical is defined, then simplify.

$$
\begin{aligned}
& \text { a) } \sqrt{25 a^{2} b}+\sqrt{4 a^{2} b} \quad a \in R \quad \& b \geq 0 \\
& \sqrt{(25)} \cdot \sqrt{a^{3}} \cdot \sqrt{b}+\sqrt{4} \cdot \sqrt{a^{2}} \cdot \sqrt{b} \\
& 5 a \sqrt{b}+2 a \sqrt{b} \\
& =7 a \sqrt{b}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } 4 \sqrt[3]{16 x^{3} y^{4}}+2 y \sqrt[3]{54 x^{3} y} \quad x \in R \not \sqrt{6 \in R} \\
& 4 \sqrt[3]{(8)} \cdot \sqrt[3]{x^{3}} \cdot \sqrt[3]{y^{3}} \cdot \sqrt[3]{2 y}+2 y \sqrt[3]{(27} \cdot \sqrt[3]{x^{3}} \cdot \sqrt[3]{2 y} \\
& 8 x y \sqrt[3]{2 y}+6 x y \sqrt[3]{2 y} \\
& =14 x y \sqrt[3]{2 y}
\end{aligned}
$$

