Angles in Standard Position in All Quadrants Part 2

April-12-19
11:40 AM

PRE-CALCULUS 11

TRIGONOMETRY
ANGLES IN STANDARD POSITION IN ALL QUADRANTS PART 2

A. Special Right Triangles \& Angles

1) The $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

The ratio for the sides in a $45^{0}-45^{0}-90^{0}$ triangle are always $1,1, \sqrt{2}$

2) The $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle

The ratio for the sides in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle are always $1, \sqrt{3}, 2$

3) The $0^{\circ}-90^{\circ}-90^{\circ}$ Triangle (Quadrantal Angles) $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$ This is an impossible triangle to create because you can't actually have an angle of 0^{0} inside of a triangle. It does, however, help to explain how we find trigonometry functions for quadrantal angles like 0° and 90°.

The ratio for the sides in a $0^{0}-90^{\circ}-90^{0}$ triangle are always $0,1,1$

Use your knowledge of Special Triangles to find the following trig ratios.
a) $\operatorname{Sin} 30^{0}$
b) $\operatorname{Sin} 45^{0}$
c) $\operatorname{Tan} 60^{\circ}$

d) $\operatorname{Sin} 0^{\circ}$
e) $\operatorname{Cos} 90^{\circ}$
f) $\operatorname{Tan} 90^{\circ}$

B. Examples

1) To the nearest degree, which values of θ satisfy the equation for $0^{\circ} \leq \theta \leq 360^{0}$?
a) $\cos \theta=-\frac{3}{4}$
b) $\tan \theta=-1$

Q2 $\& Q 4$

-45° clockwise.

2) The point $M(4,-2)$ lies on the terminal arm of angle θ in standard position. Determine:
a) the primary trigonometric ratios of θ
b) the measure $\angle \theta$ to the nearest degree
a) $\sin \theta=\frac{-2 \times \sqrt{5}}{2 \sqrt{5} \times \sqrt{5}}=\frac{-2 \sqrt{5}}{10}=-\frac{\sqrt{5}}{5}$

$$
\cos \theta=\frac{4 \times \sqrt{5}}{2 \sqrt{5} \times \sqrt{5}}=\frac{4 \sqrt{5}}{10}=\frac{2 \sqrt{5}}{5}
$$

$$
\operatorname{Tan} \theta=-\frac{2}{4}=-\frac{1}{2}
$$

$a^{2}+b^{2}=c^{2}$
$(4)^{2}+(-2)^{2}=c^{2}$
$16+4=c^{2}$
$20=c^{2}$
$C= \pm \sqrt{20} \sqrt{4} \cdot \sqrt{5}$
$C=2 \sqrt{5}$
b) -27° clockwise
$\angle \theta=333^{\circ}$

Assignment: Pg. 451 \#9, 10, 13, 14, 15, 16

