Angles in Standard Position in Quadrant 1

January-28-19
1:04 PM

PRE-CALCULUS 11

TRIGONOMETRY

ANGLES IN STANDARD POSITION IN QUADRANT 1

A. Definitions

1. Quadrant: the area of the coordinate graph that the point or shape is located.
2. Theta: a Greek Symbol θ, used to represent an angle.
3. Standard Position: an angle whose endpoints are at the origin and whose initial arm lies on the positive side of the x-axis. The positive angles are measured in a counter clockwise direction.
4. Initial Arm: the arm where the angle begins and is measured from.
5. Terminal Arm: the arm of an angle in standard position that meets the initial arm at the origin to form an angle.

B. Quadrants on a Coordinate Graph

Remember from Grade 9 the way the coordinate graph is divided into quadrants.

The coordinate graph is broken into 4 quadrants. Each quadrant is labelled with a number ($1,2,3,4$). It is important to learn the quadrants of the graph and which quadrant a specific point is located in.

C. Examples

1) The point $P(4,7)$ is on the terminal arm of an angle θ in standard position.
a) Determine the distance r from the origin to point P.
b) Determine the primary trigonometric ratios of θ.
c) Determine the measure of θ to the nearest degree.
a) $a^{2}+b^{2}=c^{2}$
b) $\sin \theta=\frac{7 \times \sqrt{65}}{\sqrt{65} \times 65}=\frac{7 \sqrt{65}}{65}$
$\cos \theta=\frac{4 \times \sqrt{65}}{\sqrt{65} \times \sqrt{65}}=\frac{4 \sqrt{65}}{65}$

$$
\operatorname{Tan} \theta=\frac{7}{4}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c \\
& (4)^{2}+(7)^{2}=c^{2} \\
& 16+49=c^{2}
\end{aligned}
$$

c) $\angle \theta=60^{\circ}$
$65=c^{2}$
$C=\sqrt{65}$
$r=\sqrt{65}$
2) If angle θ is in standard position in Quadrant 1 and $\sin \theta=\frac{\sqrt{3}}{2}$, determine $\cos \theta$ and $\tan \theta$.

$$
\begin{aligned}
& \operatorname{Cos} \theta=\frac{1}{2} \\
& \operatorname{Tan} \theta=\frac{\sqrt{3}}{1} \text { or } \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{3}}{2} \text { Opp } \\
& H_{y p} \\
& a^{2}+b^{2}=c^{2} \\
& a^{2}+(\sqrt{3})^{2}=(2)^{2} \\
& a^{2}+z=\frac{4}{3}=-3 \\
& a^{2}=1 \\
& a= \pm \sqrt{1} \\
& a=1
\end{aligned}
$$

3) Determine the slope of the terminal arm for an angle of 25° in standard position. Round your answer to one decimal place.

$$
\begin{aligned}
\text { Slope } & =\operatorname{Tan} 25^{\circ} \\
& =0.4663 \ldots \\
& =0.5
\end{aligned}
$$

$$
\text { Slope }=\frac{\text { Rise }}{\text { Run. }}
$$

4) An aircraft makes an emergency landing 200 km from an airport. It's heading from the airport was $E 50^{\circ} N$. The rescue team has to travel east then north to get to the aircraft. To the nearest kilometer, how far will the team travel to reach the aircraft?

5
Never tat Soggy Wheat.
$E 50^{\circ} \mathrm{N}$ means the angle is measured
from east to north

$$
\begin{gathered}
200\left[\cos 50^{\circ}=\frac{x}{200}\right] \\
(200)\left(\cos 50^{\circ}\right)=x
\end{gathered}
$$

$$
x=128.557 \ldots
$$

$$
200\left[\sin 50^{\circ}=\frac{y}{200}\right]
$$

$$
(200)\left(\sin 50^{\circ}\right)=y
$$

$$
y=153.208 \ldots
$$

$$
128.557+153.208
$$

$$
=281.765
$$

$$
=282 k \mathrm{~km}
$$

Assignment: Pg. 431 \#1-12

