PRE-CALCULUS 11

INEQUALITIES \& SYSTEMS OF EQUATIONS GRAPHING QUADRATIC INEQUALITIES
A. Definitions

1. quadratic inequality: any quadratic inequality that can be written in the form:

$$
\begin{array}{ll}
a x^{2}+b x+c<0 \text { or } a x^{2}+b x+c>0 & a x^{2}+b x+c=0 \\
a x^{2}+b x+c \leq 0 \text { or } a x^{2}+b x+c \geq 0 &
\end{array}
$$

where a, b, and c are constants and $a \neq 0$.
2. test point: a graphical point used to determine the answer to an inequality.
B. Graphing a Quadratic Inequality

Rules

1. Graph the inequality as if it was an equation using broken line ($>$ or $<$) or solid line (\geq or \leq)
2. Use a test point like $(0,0)$ on one side of the function to determine which side of the function contains all of the acceptable answers that satisfy the inequality.

Graph the following inequalities.

> - broken line.

1. $y>x^{2}+6 x+5$

$$
\begin{aligned}
& y=x^{2}+6 x+8 \\
& -5 \\
& y+5=x^{2}+6 x+9 \\
& y+4=(x+3)^{2}-4 \\
& y=(x+3)^{2}-4 \\
& y>x^{2}+6 x+5 \\
& y>(0)^{2}+6(0)+5 \\
& (0)>(0) \\
& 0>5 \\
& \text { False }
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& y<x^{2}+6 x+5 \\
& y=x^{2}+6 x+5 \\
& y=(x+3)^{2}-4 \\
& y=x^{2}+6 x+5 \\
&\left.y<x^{2}+6\right)^{2}+6(0)+5 \\
&(0)<(0) \\
& 0<5
\end{aligned}
$$

True.

$$
\begin{aligned}
& \text { 3. } y \geq-2 x^{2}+8 x \\
& y=-2 x^{2}+8 x \\
& y=-2\left(x^{2}-4 x\right) \\
& y=-2\left(x^{2}-4 x+4\right) \\
& y-8=-2(x-2)^{2}+8 \\
& y=-2(x-2)^{2}+8 \quad \text { Test }(-1,0) \\
& y=-2) \\
& y \geq-2 x^{2}+8 x \\
& 0 \geq-2(-1)^{2}+8(-1) \\
& 0 \geq-10 \\
& \text { True. }
\end{aligned}
$$

4. Write an inequality to describe the graph.
vertex $(3,-4)$ point $(1,-2)$
$y=a(x-p)^{2}+q$
$y=a(x-3)^{2}-4$
$(-2)=a((1)-3)^{2}-4$
$\underset{+4}{-2}=4 a-4$
$\frac{2}{4}=\frac{4}{4} a$
$a=\frac{1}{2}$
$y=\frac{1}{2}(x-3)^{2}-4$

$y \square \frac{1}{2}(x-3)^{2}-4$
$(0) \square \frac{1}{2}((0)-3)^{2}-4$
$0 \geqslant \frac{1}{2}$
$y \geq \frac{1}{2}(x-3)^{2}-4$

