PRE-CALCULUS 11 RADICALS MULTIPLYING RADICALS

A. Definitions

1. radical: a mathematical symbol representing a root.

B. Multiplying Simple Radicals

1. Multiply and simplify where possible.

a)
$$(\sqrt{3})(\sqrt{2})$$

To Solve

a) multiply the coefficients together and multiply the radicounds together.

b) Simply if possible

b)
$$(\sqrt{10})\sqrt{8}$$

$$= \sqrt{80}$$

$$= \sqrt{45}$$

c)
$$(3\sqrt{2})(5\sqrt{6})$$

d)
$$(-3\sqrt{5})(4\sqrt{5})$$

e)
$$(\sqrt{24})\sqrt{98}$$

If the roots are large numbers try 5 in pilipying the radical first.

10.56 150.52.

(256)(713)

= 14.12

14.12

14.15

10.206(12)(54)

10.13

10.16

(26)(213)(316)

= 12.108

(26)(213)(316)

= 12.108

(26)(213)(316)

= 12.108

(26)(213)(316)

= 12.108

(26)(213)(316)

= 12.108

(26)(213)(316)

= 12.108

(26)(213)(316)

= 12.108

(270)(1235)($\frac{1}{2}$ 35)

= 4.150

= 12.108

(23)(1235)($\frac{1}{2}$ 35)

= 4.203

= 20.32

= 20.32

Assignment: Multiplying Radicals Assignment #1, 3, 4

Write the conjugate of each. Then multiply each pair.

a)
$$4\sqrt{6} + 3$$

b)
$$-3\sqrt{11} + \sqrt{2}$$

Complete Assignment Questions #11 - #19

Assignment

1. Multiply and simplify where possible. Do not use a calculator.

a)
$$(\sqrt{7})(\sqrt{3})$$
 b) $4\sqrt{3} \times 2\sqrt{5}$ **c)** $8\sqrt{11} \cdot 5\sqrt{2}$

b)
$$4\sqrt{3} \times 2\sqrt{5}$$

c)
$$8\sqrt{11} \cdot 5\sqrt{2}$$

d)
$$(\sqrt{15})(\sqrt{3})$$
 e) $10\sqrt{5} \times 9\sqrt{5}$ f) $3\sqrt{6} \cdot 5\sqrt{10}$

e)
$$10\sqrt{5} \times 9\sqrt{5}$$

f)
$$3\sqrt{6} \cdot 5\sqrt{10}$$

g)
$$(\sqrt{18})(\sqrt{50})$$
 h) $-3\sqrt{5} \times 2\sqrt{2}$ i) $7\sqrt{54} \cdot 2\sqrt{6}$

h)
$$-3\sqrt{5} \times 2\sqrt{2}$$

i)
$$7\sqrt{54} \cdot 2\sqrt{6}$$

j)
$$(\sqrt{32})(\sqrt{6})$$
 k) $\sqrt{15} \times 3\sqrt{27}$ l) $3\sqrt{20} \times 4\sqrt{45}$

$$k) \sqrt{15} \times 3\sqrt{27}$$

1)
$$3\sqrt{20} \times 4\sqrt{45}$$

2. Write each radical as the product of two mixed radicals

a)
$$15\sqrt{18}$$

b)
$$35\sqrt{6}$$

140 Radicals Lesson #6: Multiplying Radicals

- Express in simplest form. Do not use a calculator.

- a) $(\sqrt{3})^2$ b) $(4\sqrt{2})^2$ c) $(-3\sqrt{5})^2$ d) $-(\sqrt{12})^2$ e) $(\sqrt{5})^3$

- Express in simplest form.
- a) $\sqrt{5} \times 2\sqrt{3} \times 3\sqrt{2}$ b) $2\sqrt{6} \times 2\sqrt{3} \times 3\sqrt{2}$ c) $(-2\sqrt{6})(2\sqrt{3})(-3\sqrt{5})$

- d) $\left(\frac{2}{3}\sqrt{27}\right)\left(\sqrt{6}\right)$ e) $2\sqrt{\frac{8}{25}} \times 5\sqrt{2}$ f) $3\sqrt[3]{16} \times 2\sqrt[3]{4} \times 2\sqrt[3]{2}$

- 5. Consider the product $6\sqrt{5} \times 3\sqrt{8}$
 - a) Use a two decimal place approximation for each radical to determine a two decimal place approximation for the product.
- b) Determine the exact value of the product as a mixed radical in simplest form.
- c) Determine a two decimal place approximation to the answer in b).
- d) Which of the two decimal place approximations is more precise? Explain.

Answer Key

1, a)
$$\sqrt{21}$$
 b) $8\sqrt{15}$ c) $40\sqrt{22}$ d) $3\sqrt{5}$ e) 450 f) $30\sqrt{15}$ g) 30

h)
$$-6\sqrt{10}$$
 i) 252 j) $8\sqrt{3}$ k) $27\sqrt{5}$ l) 360

2. Answers may vary a)
$$\left(3\sqrt{3}\right)\left(5\sqrt{6}\right)$$
 b) $\left(5\sqrt{2}\right)\left(7\sqrt{3}\right)$

3. a) 3 b) 32 c) 45 d)
$$-12$$
 e) $5\sqrt{5}$

4. a)
$$6\sqrt{30}$$
 b) 72 c) $36\sqrt{10}$ d) $6\sqrt{2}$ e) 8 f) $48\sqrt[3]{2}$

5. a) 113.94 b) $36\sqrt{10}$ c) 113.84 d) c) because rounding is not done until the last step.

6. a)
$$12 - \sqrt{30}$$
 b) $\sqrt{2} - 2$ c) $4\sqrt{21} - 8\sqrt{15}$

7. a)
$$6\sqrt{2} - 6$$
 b) $4\sqrt{3} - 4$ c) $4\sqrt{15} + 40\sqrt{2}$ d) $20\sqrt{22}$

e)
$$15-2\sqrt{15}$$
 f) $7\sqrt{10}-14\sqrt{6}$ g) $40-4\sqrt{3}-5\sqrt{2}$

8. a)
$$-14-5\sqrt{3}$$
 b) $5+2\sqrt{6}$ c) $112+28\sqrt{2}$ d) $76\sqrt{2}-30\sqrt{15}$

9. a)
$$79-20\sqrt{3}$$
 b) $98-16\sqrt{3}$ c) $72+48\sqrt{2}$ d) $1936-192\sqrt{13}$

e)
$$120 - 60\sqrt{3}$$
 f) $33 - 6\sqrt{10} + 10\sqrt{2} - 12\sqrt{5}$

10.a) Area =
$$105\sqrt{2} - 9$$
, Perimeter = $12\sqrt{3} + 12\sqrt{6}$
b) Area = $45\sqrt{5} - 6\sqrt{7}$, Perimeter = $30\sqrt{5} - 4\sqrt{7} + 6$

12.a)
$$\sqrt{2} + \sqrt{5}$$
 b) $4 - \sqrt{7}$ c) $-3\sqrt{8} + 15$

13.a)
$$\sqrt{3} + 1$$
, 2 b) $2 - \sqrt{5}$, -1 c) $2\sqrt{6} + \sqrt{3}$, 21

d)
$$2\sqrt{8} - \sqrt{27}$$
, 5 e) $\sqrt{32} + \sqrt{3}$, 29 f) $-3\sqrt{40} - 2\sqrt{10}$, 320