Lesson 2.2 Exercises, pages 100-105

Α

3. Write each mixed radical as an entire radical.

a)
$$6\sqrt{5} = \sqrt{36} \cdot \sqrt{5}$$

 $= \sqrt{180}$
b) $3\sqrt[3]{4} = \sqrt[3]{3^3} \cdot \sqrt[3]{4}$
 $= \sqrt[3]{27} \cdot \sqrt[3]{4}$
 $= \sqrt[3]{108}$

c)
$$-2\sqrt[3]{5} = \sqrt[3]{(-2)^3} \cdot \sqrt[3]{5}$$

= $\sqrt[3]{-8} \cdot \sqrt[3]{5}$
= $\sqrt[3]{-40}$
d) $5\sqrt[4]{2} = \sqrt[4]{5^4} \cdot \sqrt[4]{2}$
= $\sqrt[4]{625} \cdot \sqrt[4]{2}$
= $\sqrt[4]{1250}$

4. Write each entire radical as a mixed radical, if possible.

a)
$$\sqrt{54} = \sqrt{9 \cdot 6}$$

= $3\sqrt{6}$
b) $\sqrt[3]{96} = \sqrt[3]{8 \cdot 12}$
= $2\sqrt[3]{12}$

c)
$$\sqrt[3]{-81} = \sqrt[3]{-27 \cdot 3}$$
 d) $\sqrt[4]{47}$ $\sqrt[4]{47}$ cannot be written as a mixed radical because 47 does not have any factors that are perfect fourth powers

- **5.** Arrange in order from least to greatest.
 - a) $6\sqrt[3]{7}$, $11\sqrt[3]{7}$, $5\sqrt[3]{7}$

b) $\sqrt{28}$, $2\sqrt{5}$, $3\sqrt{3}$

Each mixed radical is a multiple of $\sqrt[3]{7}$, so compare the coefficients: 5 < 6 < 11So, from least to greatest: $5\sqrt[3]{7}$, $6\sqrt[3]{7}$, $11\sqrt[3]{7}$

Each radical has index 2. Write each mixed radical as an entire radical. $\sqrt{28}$ $2\sqrt{5} = \sqrt{2^2} \cdot \sqrt{5}$ $3\sqrt{3} = \sqrt{3^2} \cdot \sqrt{3}$

$$= \sqrt{4 \cdot 5} \qquad = \sqrt{9 \cdot 3}$$
$$= \sqrt{20} \qquad = \sqrt{27}$$

Compare the radicands: 20 < 27 < 28 So, from least to greatest: $2\sqrt{5}$, $3\sqrt{3}$, $\sqrt{28}$

В

6. For which values of the variable is each radical defined? Justify your answers.

a)
$$\sqrt{18x^2}$$

b)
$$\sqrt{-2a^3}$$

 $\sqrt{18x^2} \in \mathbb{R}$ when $18x^2 \ge 0$. $\sqrt{-2a^3} \in \mathbb{R}$ when $-2a^3 \ge 0$. 18 > 0 and $x^2 \ge 0$ -2 < 0, so $a^3 \le 0$; that is, $a \le 0$. So, $\sqrt{18x^2}$ is defined for $x \in \mathbb{R}$. So, $\sqrt{-2a^3}$ is defined for $a \le 0$. -2 < 0, so $a^3 \le 0$; that is, $a \le 0$

c)
$$\sqrt[3]{4c^3}$$

d)
$$\sqrt[4]{18z^5}$$

So, $\sqrt[3]{4c^3}$ is defined for $c \in \mathbb{R}$.

Since the cube root of a number $\sqrt[4]{18z^5} \in \mathbb{R}$ when $18z^5 \ge 0$. is defined for all real numbers, 18 > 0, so $z^5 \ge 0$; that is, $z \ge 0$ $\sqrt[3]{4c^3} \in \mathbb{R}$ when $4c^3 \in \mathbb{R}$. So, $\sqrt[4]{18z^5}$ is defined for $z \ge 0$.

7. Write each mixed radical as an entire radical.

a)
$$3\sqrt{\frac{7}{3}}$$

b)
$$-\frac{2}{3}\sqrt{\frac{5}{8}}$$

a)
$$3\sqrt{\frac{7}{3}}$$
 b) $-\frac{2}{3}\sqrt{\frac{5}{8}}$ **c)** $-\frac{2}{3}\sqrt[3]{\frac{2}{3}}$

$$= \sqrt{3^{2}} \cdot \sqrt{\frac{7}{3}} \qquad = -\sqrt{\left(\frac{2}{3}\right)^{2}} \cdot \sqrt{\frac{5}{8}} \qquad = \sqrt[3]{\left(-\frac{2}{3}\right)^{3}} \cdot \sqrt[3]{\frac{2}{3}}$$
$$= \sqrt{9\left(\frac{7}{3}\right)} \qquad = -\sqrt{\left(\frac{4}{9}\right)\left(\frac{5}{8}\right)} \qquad = \sqrt[3]{\left(-\frac{8}{27}\right)\left(\frac{2}{3}\right)}$$

$$= -\sqrt{\left(\frac{2}{3}\right)^2 \cdot 4}$$
$$= -\sqrt{\left(\frac{4}{9}\right)\left(\frac{5}{8}\right)}$$

$$= \sqrt[3]{\left(-\frac{2}{3}\right)^3} \cdot \sqrt[3]{\frac{2}{3}}$$

$$=\sqrt{9\left(\frac{7}{3}\right)}$$

$$= -\sqrt{\left(\frac{4}{9}\right)\left(\frac{5}{8}\right)}$$

$$= \sqrt[3]{\left(-\frac{8}{27}\right)\left(\frac{2}{3}\right)}$$

$$=\sqrt{21}$$

$$= \sqrt{21} \qquad = -\sqrt{\frac{5}{18}} \qquad = \sqrt[3]{-\frac{16}{81}}$$

$$=\sqrt[3]{-\frac{16}{81}}$$

8. Write each entire radical as a mixed radical, if possible.

a)
$$\sqrt{\frac{125}{4}}$$
 b) $\sqrt[4]{\frac{32}{243}}$

b)
$$\sqrt[4]{\frac{32}{243}}$$

c)
$$\sqrt[3]{-\frac{64}{81}}$$

$$= \frac{\sqrt{23}}{\sqrt{4}}$$
$$= \frac{5\sqrt{5}}{2}$$

$$= \frac{\sqrt{25 \cdot 5}}{\sqrt{4}} \qquad \qquad = \frac{\sqrt[4]{16 \cdot 2}}{\sqrt[4]{81 \cdot 3}} \qquad \qquad = \frac{\sqrt[3]{-64}}{\sqrt[3]{27 \cdot 3}}$$
$$= \frac{5\sqrt{5}}{2} \qquad \qquad = \frac{2\sqrt[4]{2}}{3\sqrt[4]{3}} \qquad \qquad = \frac{-4}{3\sqrt[3]{3}}$$

$$=\frac{\sqrt[3]{-64}}{\sqrt[3]{27\cdot 3}}$$

$$=\frac{3\sqrt{3}}{2}$$

$$\frac{\sqrt[4]{2}}{\sqrt[4]{3}}$$

$$=\frac{-4}{3\sqrt[3]{3}}$$

- 9. Arrange in order from greatest to least.
 - a) $3\sqrt[3]{5}$, $2\sqrt{11}$, $4\sqrt[4]{8}$

The mixed radicals have different indices, so use a calculator.

$$3\sqrt[3]{5} = 5.1299...$$

 $2\sqrt{11} = 6.6332...$

$$4\sqrt[4]{8} = 6.7271...$$

Compare the decimals: 6.7271 > 6.6332 > 5.1299

So, from greatest to least: $4\sqrt[4]{8}$, $2\sqrt{11}$, $3\sqrt[3]{5}$

b)
$$4\sqrt{6}$$
, $4\sqrt{7}$, $4\sqrt{2}$, $4\sqrt{5}$

Each mixed radical has index 2 and coefficient 4.

So, compare the radicands: 7 > 6 > 5 > 2

So, from greatest to least: $4\sqrt{7}$, $4\sqrt{6}$, $4\sqrt{5}$, $4\sqrt{2}$

c)
$$3\sqrt[3]{5}$$
, $2\sqrt[3]{12}$, $4\sqrt[3]{2}$, $3\sqrt[3]{4}$

Each radical has index 3.

Write each mixed radical as an entire radical.

$$3\sqrt[3]{5} = \sqrt[3]{3^3 \cdot 5} = \sqrt[3]{135} = \sqrt[3]{96} 4\sqrt[3]{2} = \sqrt[3]{4^3 \cdot 2} = \sqrt[3]{128} = \sqrt[3]{108}
$$2\sqrt[3]{12} = \sqrt[3]{2^3 \cdot 12} = \sqrt[3]{96} 3\sqrt[3]{4} = \sqrt[3]{3^3 \cdot 4} = \sqrt[3]{108}$$$$

Compare the radicands: 135 > 128 > 108 > 96So, from greatest to least: $3\sqrt[3]{5}$, $4\sqrt[3]{2}$, $3\sqrt[3]{4}$, $2\sqrt[3]{12}$

10. Write the values of the variable for which each radical is defined. Simplify the radical, if possible.

a)
$$\sqrt[3]{-8x^2}$$

b) $\sqrt{48b^4}$

Since the cube root of a number is defined for all real values of x, the radical is defined for $x \in \mathbb{R}$.

$$\sqrt[3]{-8x^2} = \sqrt[3]{-8 \cdot x^2} = -2\sqrt[3]{x^2}$$

$$\sqrt{48b^4} \in \mathbb{R}$$
 when $48b^4 \ge 0$.
 $48 > 0$ and $b^4 \ge 0$
So, $\sqrt{48b^4}$ is defined for $b \in \mathbb{R}$.
 $\sqrt{48b^4} = \sqrt{16 \cdot 3 \cdot b^4}$
 $= 4b^2 \sqrt{3}$

c)
$$\sqrt[4]{16r^4}$$

d)
$$\sqrt[4]{125x^3}$$

 $\sqrt[4]{16r^4} \in \mathbb{R}$ when $16r^4 \ge 0$. $\sqrt[4]{125x^3} \in \mathbb{R}$ when $125x^3 \ge 0$. $16 > 0 \text{ and } r^4 \ge 0$ $\sqrt[4]{16r^4} = \sqrt[4]{16 \cdot r^4}$ = 2|r|

$$\sqrt[4]{16r^4} \in \mathbb{R} \text{ when } 16r^4 \ge 0.$$

$$16 > 0 \text{ and } r^4 \ge 0$$

$$125 > 0 \text{ so } x^3 \ge 0; \text{ that is, } x \ge 0$$

$$50, \sqrt[4]{16r^4} \text{ is defined for } r \in \mathbb{R}.$$

$$\sqrt[4]{16r^4} = \sqrt[4]{16 \cdot r^4}$$

$$= 2|r|$$

$$4/125x^3 \text{ cannot be simplified because the radicand does not have any factors that are perfect fourth powers.}$$

11. For which values of the variable is each radical defined? Rewrite the radical in simplest form.

a)
$$\sqrt[3]{\frac{27x^2}{16}}$$

b)
$$\sqrt[3]{\frac{-48c^5}{125}}$$

Since the cube root of a number is defined for all real values of x, the radical is defined for $x \in \mathbb{R}$.

$$\sqrt[3]{\frac{27x^2}{16}} = \sqrt[3]{\frac{27 \cdot x^2}{8 \cdot 2}} = \frac{3}{2} \sqrt[3]{\frac{x^2}{2}}$$

Since the cube root of a number is defined for all real values of c, the radical is defined for $c \in \mathbb{R}$.

$$\sqrt[3]{\frac{-48c^5}{125}} = \sqrt[3]{\frac{-8c^3 \cdot 6c^2}{125}}$$
$$= -\frac{2}{5}c\sqrt[3]{6c^2}$$

c)
$$\sqrt[4]{\frac{81y^5}{16}}$$

$$\sqrt[4]{\frac{81y^5}{16}} \in \mathbb{R} \text{ when } y^5 \ge 0; \text{ that is, } y \ge 0$$

$$\sqrt[4]{\frac{81y^5}{16}} = \sqrt[4]{\frac{81y^4 \cdot y}{16}}$$

$$= \frac{3}{2}y\sqrt[4]{y}$$

- **12.** Determine whether each statement is:
 - always true
 - sometimes true
 - never true

Justify your answer.

a) $(-x)^2 = x^2$ Always true; a number multiplied by itself is always positive.

$$\mathbf{b})\,\sqrt{x^2}=\pm x$$

Sometimes true;
$$\sqrt{x^2} = |x|$$
, and $|x| \ge 0$, so when $x \ne 0$, $\sqrt{x^2} \ne \pm x$.
But, when $x = 0$, $\sqrt{x^2} = \pm x$

- **13.** In the far north, ice roads are often the only way to get supplies to mines. The formula $t = 4\sqrt{m}$ is used to determine the minimum thickness of ice, t inches, needed for an ice road to support a mass of m tons.
 - a) What is the minimum thickness of ice needed for a mass of 10 T?

Use the formula
$$t = 4\sqrt{m}$$
. Substitute: $m = 10$ $t = 4\sqrt{10}$

So, the minimum thickness of ice needed is $4\sqrt{10}$ in.

b) What is the maximum mass for ice that is 10 in. thick?

Use the formula $t = 4\sqrt{m}$. Substitute: t = 10 $10 = 4\sqrt{m}$

$$\frac{5}{2} = \sqrt{m}$$

$$\frac{5}{2} = \sqrt{m}$$

$$\left(\frac{5}{2}\right)^2 = (\sqrt{m})^2$$

$$m = \frac{25}{2} \text{ as } 6.25$$

 $m = \frac{25}{4}$, or 6.25

So, the maximum mass is 6.25 T.

c) Suppose the mass of a load is multiplied by 4. How will the thickness of the ice have to increase? Explain your thinking.

When the mass is multiplied by 4, $t = 4\sqrt{4m}$

$$= 4 \cdot 2\sqrt{m}$$

Compare this to the original equation: $t = 4\sqrt{m}$ The thickness of the ice will be multiplied by 2, which is $\sqrt{4}$.

C

14. For which values of the variables is each radical defined? Simplify the radical, if possible.

a)
$$\sqrt{98a^3b^6}$$

b)
$$\sqrt[3]{-40x^3y^5}$$

98 > 0 and
$$b^6 \ge 0$$

So, $a^3 \ge 0$; that is, $a \ge 0$
 $\sqrt{98a^3b^6}$ is defined for
 $a \ge 0$, $b \in \mathbb{R}$.
 $\sqrt{98a^3b^6} = \sqrt{49 \cdot 2 \cdot a^2b^6 \cdot a}$

 $= 7a|b^3|\sqrt{2a}$

$$\sqrt{98a^3b^6} \in \mathbb{R}$$
 when $98a^3b^6 \ge 0$. Since the cube root of a number is defined for all real numbers,

So,
$$a^3 \ge 0$$
; that is, $a \ge 0$ $\sqrt[3]{-40x^3y^5}$ is defined for $x \in \mathbb{R}$, $y \in \mathbb{R}$. $\sqrt{98a^3b^6}$ is defined for $a \ge 0$, $b \in \mathbb{R}$. $\sqrt[3]{-40x^3y^5} = \sqrt[3]{-8 \cdot 5 \cdot x^3y^3 \cdot y^2} = -2xy\sqrt[3]{5y^2}$

c)
$$\sqrt[4]{48r^4s^8}$$

d)
$$\sqrt[3]{128m^2n^4}$$

$$\sqrt[4]{48r^4s^8} \in \mathbb{R}$$
 when $48r^4s^8 \ge 0$.
 $48 > 0, r^4 \ge 0$, and $s^8 \ge 0$
So, $\sqrt[4]{48r^4s^8}$ is defined
for $r \in \mathbb{R}$, $s \in \mathbb{R}$.
 $\sqrt[4]{48r^4s^8} = \sqrt[4]{16 \cdot 3 \cdot r^4s^8}$
 $= 2|r|s^2\sqrt[4]{3}$

$$\sqrt[4]{48r^4s^8} \in \mathbb{R}$$
 when $48r^4s^8 \ge 0$. Since the cube root of a number $48 > 0$, $r^4 \ge 0$, and $s^8 \ge 0$ is defined for all real numbers, $\sqrt[3]{128m^2n^4}$ is defined for $m \in \mathbb{R}$, $n \in \mathbb{R}$.
$$\sqrt[4]{48r^4s^8} = \sqrt[4]{16 \cdot 3 \cdot r^4s^8}$$

$$\sqrt[4]{128m^2n^4} = \sqrt[3]{64 \cdot 2 \cdot n^3 \cdot m^2n}$$

$$\sqrt[4]{48r^4s^8} = \sqrt[4]{16 \cdot 3 \cdot r^4s^8}$$

$$= 4n\sqrt[3]{2m^2n}$$

15. The surface area of sphere B is A square units. The surface area of sphere C is twice that of sphere B. The surface area of sphere D is 9 times that of sphere B. Determine the radii of spheres C and D in terms of A.

Formula for surface area of a sphere: $SA = 4\pi r^2$ Sphere B has surface area A square units.

Sphere B has surface area A square units.

Sphere C
Surface area:
$$2A$$
So, $2A = 4\pi r^2$
So, $9A = 4\pi r^2$
So, $9A = 4\pi r^2$

$$\frac{2A}{4\pi} = r^2$$

$$\frac{A}{2\pi} = r^2$$

$$\sqrt{\frac{A}{2\pi}} = r$$

$$\sqrt{\frac{A}{2\pi}} = r$$

$$\sqrt{\frac{A}{2\pi}} = r$$

$$\sqrt{\frac{A}{2\pi}} = r$$

Sphere C has radius $\sqrt{\frac{A}{2\pi}}$ units. Sphere D has radius $\frac{3}{2}\sqrt{\frac{A}{\pi}}$ units.

16. A circle with radius *r* and area *A* touches another circle with radius *y* and area 4*A*. A larger circle is drawn around the other two as shown.

a) Determine an expression for the value of *y* in terms of *r*. State the restrictions on the variables.

Formula for area of a circle: $A = \pi r^2$ Since r and y are lengths, r > 0 and y > 0. Area of small circle: $A = \pi r^2$ Area of middle circle: $A = \pi y^2$

To determine y in terms of r, substitute $A = \pi r^2$ in $4A = \pi y^2$, then solve for y.

$$4A = \pi y^{2}$$

$$4(\pi r^{2}) = \pi y^{2}$$

$$\frac{4\pi r^{2}}{\pi} = y^{2}$$

$$4r^{2} = y^{2}$$

$$y = \sqrt{4r^{2}}$$

$$y = 2r$$

b) Determine the area of the shaded region in terms of *A*.

Area of shaded region

= Area of large circle – area of 2 smaller circles

$$= \pi (y + 2r)^2 - 4A - A$$
 Substitute: $y = 2r$

$$=\pi(2r+2r)^2-5A$$

$$=\pi(4r)^2-5A$$

$$= 16\pi r^2 - 5A$$

Substitute:
$$\pi r^2 = A$$

$$= 16A - 5A$$

The area of the shaded region is 11A.