REVIEW, pages 156-161

2.1

1. For each pair of numbers, write two expressions to represent the distance between the numbers on a number line, then determine this distance.
a) $1 \frac{3}{8}$ and $3 \frac{1}{4}$
b) 7.5 and -3.75

$$
\begin{aligned}
\left|1 \frac{3}{8}-3 \frac{1}{4}\right| & \text { and }\left|3 \frac{1}{4}-1 \frac{3}{8}\right| \\
\left|1 \frac{3}{8}-3 \frac{1}{4}\right| & =\left|\frac{11}{8}-\frac{13}{4}\right| \\
& =\left|\frac{11}{8}-\frac{26}{8}\right| \\
& =\left|-\frac{15}{8}\right| \\
& =\frac{15}{8}, \text { or } 1 \frac{7}{8}
\end{aligned}
$$

$$
\begin{aligned}
& |7.5-(-3.75)| \text {, or } \\
& |7.5+3.75| \text {, and }
\end{aligned} \begin{array}{r}
|-3.75-7.5| \\
\begin{aligned}
|7.5+3.75| & =|11.25| \\
& =11.25
\end{aligned}
\end{array}
$$

The numbers are 11.25 units apart on a number line.
The numbers are $1 \frac{7}{8}$ units apart on a number line.
2. Arrange in order from least to greatest.
a) $3 \sqrt{6}, \sqrt{24},-2 \sqrt{6}, \sqrt{96}$

Each radical has index 2. Write each mixed radical as an entire radical.

$$
\begin{array}{rlrlrl}
3 \sqrt{6} & =\sqrt{3^{2}} \cdot \sqrt{6} & \sqrt{24} & -2 \sqrt{6} & =-\sqrt{2^{2}} \cdot \sqrt{6} & \sqrt{96} \\
& =\sqrt{9 \cdot 6} & & & =-\sqrt{4 \cdot 6} \\
& =\sqrt{54} & & & =-\sqrt{24}
\end{array}
$$

$-\sqrt{24}$ is negative so it has the least value.
Compare the radicands of the other radicals: $24<54<96$
So, from least to greatest: $-2 \sqrt{6}, \sqrt{24}, 3 \sqrt{6}, \sqrt{96}$
b) $\frac{5}{8}, \sqrt{\frac{72}{50}}, 2 \sqrt{\frac{1}{16}}, \frac{\sqrt{9}}{5}$

Each radical has index 2.
Simplify each radical.

$$
\begin{array}{rlrl}
\frac{5}{8} & \sqrt{\frac{72}{50}} & =\sqrt{\frac{36 \cdot 2}{25 \cdot 2}} & 2 \sqrt{\frac{1}{16}}=2\left(\frac{1}{4}\right) \quad \frac{\sqrt{9}}{5}=\frac{3}{5} \\
& =\sqrt{\frac{36}{25}} & & =\frac{1}{2} \\
& =\frac{6}{5} &
\end{array}
$$

Compare the fractions: $\frac{1}{2}<\frac{3}{5}<\frac{5}{8}<\frac{6}{5}$
So, from least to greatest: $2 \sqrt{\frac{1}{16}}, \frac{\sqrt{9}}{5}, \frac{5}{8}, \sqrt{\frac{72}{50}}$
3. Write each entire radical as a mixed radical, if possible.
a) $\sqrt[3]{-\frac{48}{250}}=\sqrt[3]{\frac{-48}{250}}$
b) $\sqrt[4]{\frac{32}{243}}=\sqrt[4]{\frac{16 \cdot 2}{81 \cdot 3}}$
$=\sqrt[3]{\frac{-8 \cdot 6}{125 \cdot 2}}$
$=\frac{2}{3} \sqrt[4]{\frac{2}{3}}$
$=\frac{-2}{5} \sqrt[3]{\frac{6}{2}}$
$=-\frac{2}{5} \sqrt[3]{3}$
4. Write the values of the variable for which each radical is defined, then simplify the radical, if possible.
a) $\sqrt{16 x}$
$\sqrt{16 x} \in \mathbb{R}$ when
$16 x \geq 0$; that is,
when $x \geq 0$.
$\sqrt{16 x}=\sqrt{16 \cdot x}$

$$
=4 \sqrt{x}
$$

b) $\sqrt{64 x^{2}}$
$\sqrt{64 x^{2}} \in \mathbb{R}$ when
$64 x^{2} \geq 0$.
$64>0$ and $x^{2} \geq 0$
So, $\sqrt{64 x^{2}}$ is defined
for $x \in \mathbb{R}$.

$$
\begin{aligned}
\sqrt{64 x^{2}} & =\sqrt{64 \cdot x^{2}} \\
& =8|x|
\end{aligned}
$$

c) $\sqrt[3]{-64 x^{3}}$
Since the cube root of a number is defined for all real values of x, the radical is defined for $x \in \mathbb{R}$.

$$
\begin{aligned}
& \sqrt[3]{-64 x^{3}} \\
& =\sqrt[3]{-64 \cdot x^{3}} \\
& =-4 x
\end{aligned}
$$

d) $\sqrt[4]{16 x^{6}}$
$\sqrt[4]{16 x^{6}} \in \mathbb{R}$ when $16 x^{6} \geq 0$.
$16>0$ and $x^{6} \geq 0$
So, $\sqrt[4]{16 x^{6}}$
is defined for $x \geq 0$.

$$
\begin{aligned}
\sqrt[4]{16 x^{6}} & =\sqrt[4]{16 \cdot x^{4} \cdot x^{2}} \\
& =2|x| \sqrt[4]{x^{2}}
\end{aligned}
$$

2.3

5. Identify the values of the variables for which each radical is defined where necessary, then simplify.
a) $\sqrt{72}+\sqrt{50}-\sqrt{18}$
b) $\sqrt[3]{16 x}-\sqrt[3]{375 x}+3 \sqrt[3]{2 x}$
$=\sqrt{36 \cdot 2}+\sqrt{25 \cdot 2}-\sqrt{9 \cdot 2}$ The cube root of a number is defined
$=6 \sqrt{2}+5 \sqrt{2}-3 \sqrt{2} \quad$ for all real numbers. So, each radical
$=8 \sqrt{2}$
is defined for $x \in \mathbb{R}$.
$=\sqrt[3]{8 \cdot 2 \cdot x}-\sqrt[3]{125 \cdot 3 \cdot x}+3 \sqrt[3]{2 x}$
$=2 \sqrt[3]{2 x}-5 \sqrt[3]{3 x}+3 \sqrt[3]{2 x}$
$=5 \sqrt[3]{2 x}-5 \sqrt[3]{3 x}$
6. A square with area 75 square units has a square corner of area 27 square units moved as shown. Determine the perimeter of the resulting shape. Describe the steps you took to solve the problem.

The side length of a square is the square root of its area.
So, the side length of the square with area 75 square units is:
$\sqrt{75}=5 \sqrt{3}$ units
The side length of the square with area 27 square units is:
$\sqrt{27}=3 \sqrt{3}$ units
Label the diagram.
Perimeter of shape formed $=5(3 \sqrt{3})+5 \sqrt{3}+3(5 \sqrt{3}-3 \sqrt{3})$

$$
\begin{aligned}
& =15 \sqrt{3}+5 \sqrt{3}+3(2 \sqrt{3}) \\
& =26 \sqrt{3}
\end{aligned}
$$

The perimeter of the shape formed is $26 \sqrt{3}$ units.
7. Identify the values of the variable for which each expression is defined where necessary, then expand and simplify.
a) $(\sqrt{5}-\sqrt{7})(\sqrt{5}+\sqrt{7})$
$=\sqrt{5}(\sqrt{5}+\sqrt{7})-\sqrt{7}(\sqrt{5}+\sqrt{7})$
$=5+\sqrt{35}-\sqrt{35}-7$
$=-2$
b) $(2 \sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{b})$

The radicands cannot be negative, so $a \geq 0$ and $b \geq 0$.

$$
\begin{aligned}
& (2 \sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{b}) \\
& =2 \sqrt{a}(\sqrt{a}+\sqrt{b})+\sqrt{b}(\sqrt{a}+\sqrt{b}) \\
& =2 a+2 \sqrt{a b}+\sqrt{a b}+b \\
& =2 a+3 \sqrt{a b}+b
\end{aligned}
$$

8. Rationalize the denominator.
a) $\frac{3 \sqrt{5}-\sqrt{7}}{5 \sqrt{3}}$
$=\frac{(3 \sqrt{5}-\sqrt{7})}{5 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$
b) $\frac{3 \sqrt{2}+4 \sqrt{3}}{\sqrt{8}}=\frac{3 \sqrt{2}+4 \sqrt{3}}{2 \sqrt{2}}$
$=\frac{3 \sqrt{2}+4 \sqrt{3}}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{3 \sqrt{2} \cdot \sqrt{2}+4 \sqrt{3} \cdot \sqrt{2}}{2 \sqrt{2} \cdot \sqrt{2}}$
$=\frac{6+4 \sqrt{6}}{4}$
$=\frac{3+2 \sqrt{6}}{2}$
9. Simplify.
a) $\frac{2 \sqrt{6}}{\sqrt{7}+\sqrt{5}}$
b) $\frac{3 \sqrt{5}-4 \sqrt{3}}{6 \sqrt{2}-\sqrt{3}}$
$=\frac{2 \sqrt{6}}{(\sqrt{7}+\sqrt{5})} \cdot \frac{(\sqrt{7}-\sqrt{5})}{(\sqrt{7}-\sqrt{5})}$
$=\frac{(3 \sqrt{5}-4 \sqrt{3})}{(6 \sqrt{2}-\sqrt{3})} \cdot \frac{(6 \sqrt{2}+\sqrt{3})}{(6 \sqrt{2}+\sqrt{3})}$
$=\frac{2 \sqrt{6}(\sqrt{7})-2 \sqrt{6}(\sqrt{5})}{(\sqrt{7})^{2}-(\sqrt{5})^{2}}$
$=\frac{3 \sqrt{5}(6 \sqrt{2}+\sqrt{3})-4 \sqrt{3}(6 \sqrt{2}+\sqrt{3})}{(6 \sqrt{2})^{2}-(\sqrt{3})^{2}}$
$=\frac{2 \sqrt{42}-2 \sqrt{30}}{2}$
$=\frac{18 \sqrt{10}+3 \sqrt{15}-24 \sqrt{6}-12}{72-3}$
$=\sqrt{42}-\sqrt{30}$
$=\frac{3(6 \sqrt{10}+\sqrt{15}-8 \sqrt{6}-4)}{69}$
$=\frac{6 \sqrt{10}+\sqrt{15}-8 \sqrt{6}-4}{23}$
10. Identify the values of the variable for which each expression is defined, then expand and simplify.
a) $2 \sqrt{a}(3 \sqrt{b}+\sqrt{a})^{2}$

The radicands cannot be negative, so $a \geq 0$ and $b \geq 0$.

$$
\begin{aligned}
2 \sqrt{a}(3 \sqrt{b}+\sqrt{a})^{2} & =2 \sqrt{a}(3 \sqrt{b}+\sqrt{a})(3 \sqrt{b}+\sqrt{a}) \\
& =2 \sqrt{a}[(3 \sqrt{b})(3 \sqrt{b}+\sqrt{a})+\sqrt{a}(3 \sqrt{b}+\sqrt{a})] \\
& =2 \sqrt{a}[9 b+3 \sqrt{a b}+3 \sqrt{a b}+a] \\
& =2 \sqrt{a}[9 b+6 \sqrt{a b}+a] \\
& =18 b \sqrt{a}+12 \sqrt{a^{2} b}+2 a \sqrt{a} \\
& =18 b \sqrt{a}+12 a \sqrt{b}+2 a \sqrt{a}
\end{aligned}
$$

b) $(3 \sqrt{x}+2 \sqrt{y})^{2}-(3 \sqrt{x}-2 \sqrt{y})^{2}$

The radicands cannot be negative, so $x \geq 0$ and $y \geq 0$.

$$
\begin{aligned}
&(3 \sqrt{x}+2 \sqrt{y})^{2}-(3 \sqrt{x}-2 \sqrt{y})^{2} \\
&=(3 \sqrt{x}+2 \sqrt{y})(3 \sqrt{x}+2 \sqrt{y})-(3 \sqrt{x}-2 \sqrt{y})(3 \sqrt{x}-2 \sqrt{y}) \\
&= 3 \sqrt{x}(3 \sqrt{x}+2 \sqrt{y})+2 \sqrt{y}(3 \sqrt{x}+2 \sqrt{y}) \\
&-[3 \sqrt{x}(3 \sqrt{x}-2 \sqrt{y})-2 \sqrt{y}(3 \sqrt{x}-2 \sqrt{y})] \\
&= 9 x+6 \sqrt{x y}+6 \sqrt{x y}+4 y-[9 x-6 \sqrt{x y}-6 \sqrt{x y}+4 y] \\
&= 9 x+12 \sqrt{x y}+4 y-9 x+12 \sqrt{x y}-4 y \\
&= 24 \sqrt{x y}
\end{aligned}
$$

2.5

11. Determine the root of each equation. Verify the solution.
a) $5=\sqrt{2 x+7}$
b) $1-2 \sqrt{3 x}=4-3 \sqrt{3 x}$
$2 x+7 \geq 0 ;$ that is, $x \geq-\frac{7}{2}$
$5=\sqrt{2 x+7}$
$5^{2}=(\sqrt{2 x+7})^{2}$
$25=2 x+7$
$3 x \geq 0$; that is, $x \geq 0$
$1-2 \sqrt{3 x}=4-3 \sqrt{3 x}$
$\sqrt{3 x}=3$
$2 x=18$
$x=9$

$$
\begin{aligned}
(\sqrt{3 x})^{2} & =3^{2} \\
3 x & =9 \\
x & =3
\end{aligned}
$$

12. Which equations have real roots? Justify your answers.
a) $2 \sqrt{x+5}=3 \sqrt{5 x-11}$
b) $\sqrt{11 x+2}+8=3$
$x+5 \geq 0$; that is, $x \geq-5$
$5 x-11 \geq 0$; that is, $x \geq \frac{11}{5}$
So, for both radicals to be
defined, $x \geq \frac{11}{5}$

$$
\begin{aligned}
2 \sqrt{x+5} & =3 \sqrt{5 x-11} \\
(2 \sqrt{x+5})^{2} & =(3 \sqrt{5 x-11})^{2} \\
4(x+5) & =9(5 x-11) \\
4 x+20 & =45 x-99 \\
119 & =41 x \\
x & =\frac{119}{41}, \text { or } 2 \frac{37}{41}
\end{aligned}
$$

$11 x+2 \geq 0 ;$ that is, $x \geq-\frac{2}{11}$
$\sqrt{11 x+2}+8=3$

$$
\sqrt{11 x+2}=-5
$$

The left side of the equation is greater than or equal to 0 .
The right side of the equation is negative, -5 .
So, no real solutions are possible.
The equation has no real roots.

Since $x=2 \frac{37}{41}$ lies in the set of possible values for x, the equation has a real root.
13. The approximate speed at which a tsunami can travel is given by the formula $S=\sqrt{9.8 d}$, where S is the speed of the tsunami in metres per second, and d is the mean depth of the water in metres.
A tsunami is travelling at $36 \mathrm{~m} / \mathrm{s}$. What is the mean depth of the water to the nearest metre?

$$
\begin{aligned}
S & =\sqrt{9.8 d} \quad \text { Substitute: } S=36 \\
36 & =\sqrt{9.8 d} \\
(36)^{2} & =(\sqrt{9.8 d})^{2} \\
1296 & =9.8 d \\
\frac{1296}{9.8} & =d \\
d & =132.2448 . \ldots
\end{aligned}
$$

The mean depth of the water is about 132 m .

