PRACTICE TEST, pages 162-164

1. Multiple Choice Which statement is false?
A. $|x|=\sqrt{x^{2}} \quad$ for $x \in \mathbb{R}$
B. $x=\sqrt{x^{2}}$ for $x \geq 0$
C. $|x|=\sqrt[3]{x^{3}} \quad$ for $x \in \mathbb{R}$
D. $x=\sqrt[3]{x^{3}}$ for $x \geq 0$
2. Multiple Choice Which is the correct simplification of $\sqrt{12 x^{3}}$?
A. $2 \sqrt{3 x^{3}}, x \geq 0$
B. $2 x \sqrt{3 x}, x \in \mathbb{R}$
(C. $2 x \sqrt{3 x}, x \geq 0$
D. $2|x| \sqrt{3 x}, x \in \mathbb{R}$
3. Simplify.
a) $\sqrt{72}-5 \sqrt{2}+3 \sqrt{8}$
b) $(\sqrt{3}-\sqrt{5})(\sqrt{3}+\sqrt{5})$
$\begin{array}{lll}=\sqrt{36 \cdot 2}-5 \sqrt{2}+3 \sqrt{4 \cdot 2} & & =\sqrt{3}(\sqrt{3}+\sqrt{5})-\sqrt{5}(\sqrt{3}+\sqrt{5}) \\ =6 \sqrt{2}-5 \sqrt{2}+6 \sqrt{2} & & =3+\sqrt{15}-\sqrt{15}-5 \\ =7 \sqrt{2} & & =-2\end{array}$
c) $(2 \sqrt{6}+3 \sqrt{5})^{2}$
d) $\frac{1}{\sqrt{7}-\sqrt{3}}$
$=(2 \sqrt{6}+3 \sqrt{5})(2 \sqrt{6}+3 \sqrt{5})$
$=\frac{1}{(\sqrt{7}-\sqrt{3})} \cdot \frac{(\sqrt{7}+\sqrt{3})}{(\sqrt{7}+\sqrt{3})}$
$=2 \sqrt{6}(2 \sqrt{6}+3 \sqrt{5})$
$=\frac{\sqrt{7}+\sqrt{3}}{(\sqrt{7})^{2}-(\sqrt{3})^{2}}$
$=24+6 \sqrt{30}+6 \sqrt{30}+45$
$=\frac{\sqrt{7}+\sqrt{3}}{4}$
4. Identify the values of the variable for which each radical is defined where necessary, then simplify.
a) $(\sqrt{x}+2)(\sqrt{x}-3)$
b) $6 \sqrt{a^{2}}+2 a$

The radicands cannot be negative, so $x \geq 0$.
$(\sqrt{x}+2)(\sqrt{x}-3)$
$=\sqrt{x}(\sqrt{x}-3)+2(\sqrt{x}-3)$
$\sqrt{a^{2}} \in \mathbb{R}$ when $a^{2} \geq 0$.
$a^{2} \geq 0$, so $\sqrt{a^{2}}$ is defined
for $a \in \mathbb{R}$.
$6 \sqrt{a^{2}}+2 a$
$=x-3 \sqrt{x}+2 \sqrt{x}-6$
$=x-\sqrt{x}-6$

$$
=6|a|+2 a
$$

c) $\frac{8 \sqrt{2}}{\sqrt{12}-\sqrt{10}}$
d) $\frac{2 \sqrt{10}-\sqrt{3}}{\sqrt{10}+\sqrt{3}}$
$=\frac{8 \sqrt{2}}{2 \sqrt{3}-\sqrt{10}}$
$=\frac{(2 \sqrt{10}-\sqrt{3})}{(\sqrt{10}+\sqrt{3})} \cdot \frac{(\sqrt{10}-\sqrt{3})}{(\sqrt{10}-\sqrt{3})}$
$=\frac{8 \sqrt{2}}{(2 \sqrt{3}-\sqrt{10})} \cdot \frac{(2 \sqrt{3}+\sqrt{10})}{(2 \sqrt{3}+\sqrt{10})}$
$=\frac{2 \sqrt{10}(\sqrt{10}-\sqrt{3})-\sqrt{3}(\sqrt{10}-\sqrt{3})}{(\sqrt{10})^{2}-(\sqrt{3})^{2}}$
$=\frac{8 \sqrt{2}(2 \sqrt{3})+8 \sqrt{2}(\sqrt{10})}{(2 \sqrt{3})^{2}-(\sqrt{10})^{2}}$
$=\frac{20-2 \sqrt{30}-\sqrt{30}+3}{10-3}$
$=\frac{16 \sqrt{6}+8 \sqrt{20}}{12-10}$
$=\frac{16 \sqrt{6}+16 \sqrt{5}}{2}$
$=8 \sqrt{6}+8 \sqrt{5}$
5. Which equations have real roots? If the root is real, determine its value. If the equation has no real roots, explain how you know.

$$
\text { a) } \begin{aligned}
\sqrt{2 x+3} & =3 \\
2 x+3 \geq 0 ; & \text { that } \\
\sqrt{2 x+3} & =3 \\
(\sqrt{2 x+3})^{2} & =3^{2} \\
2 x+3 & =9 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

$2 x+3 \geq 0$; that is, $x \geq-\frac{3}{2}$
$x=3$ lies in the set of possible values for x. So, the equation has a real root.
b) $\sqrt{5 x-1}=\sqrt{2 x+5}$
$5 x-1 \geq 0$; that is, $x \geq \frac{1}{5}$
$2 x+5 \geq 0$; that is, $x \geq-\frac{5}{2}$
So, for both radicals to be defined, $x \geq \frac{1}{5}$

$$
\begin{aligned}
\sqrt{5 x-1} & =\sqrt{2 x+5} \\
(\sqrt{5 x-1})^{2} & =(\sqrt{2 x+5})^{2}
\end{aligned}
$$

$$
5 x-1=2 x+5
$$

$$
3 x=6
$$

$$
x=2
$$

$x=2$ lies in the set of possible values for x. So, the equation has a real root.
c) $\sqrt{3 x+2}+5=2$
$3 x+2 \geq 0 ;$ that is, $x \geq-\frac{2}{3}$

$$
\begin{aligned}
\sqrt{3 x+2}+5 & =2 \\
\sqrt{3 x+2} & =-3
\end{aligned}
$$

The left side of the equation is greater than or equal to 0 . The right side of the equation is negative, -3 .
So, no real solutions are possible.
The equation has no real roots.
d) $2 \sqrt{x-8}=3 \sqrt{x+2}$
$x-8 \geq 0$; that is, $x \geq 8$
$x+2 \geq 0$; that is, $x \geq-2$
So, for both radicals to be defined,
$x \geq 8$

$$
\begin{aligned}
2 \sqrt{x-8} & =3 \sqrt{x+2} \\
(2 \sqrt{x-8})^{2} & =(3 \sqrt{x+2})^{2} \\
4(x-8) & =9(x+2) \\
4 x-32 & =9 x+18 \\
-50 & =5 x \\
x & =-10
\end{aligned}
$$

$x=-10$ does not lie in the set of possible values for x. So, the equation has no real roots.
6. To make a picture frame, a square with area $40 \mathrm{~cm}^{2}$ is cut from a square with area $90 \mathrm{~cm}^{2}$. Serena wants to put a thin gold ribbon around the inside and outside edges of the frame. How much ribbon does Serena need?

The side length of a square is the square root of its area.
So, the side length of the square with area $40 \mathrm{~cm}^{2}$ is:
$\sqrt{40}=2 \sqrt{10} \mathrm{~cm}$
The side length of the square with area $90 \mathrm{~cm}^{2}$ is:
$\sqrt{90}=3 \sqrt{10} \mathrm{~cm}$
The length of ribbon needed $=$ perimeter of large square

$$
\begin{aligned}
& + \text { perimeter of small square } \\
= & 4(2 \sqrt{10})+4(3 \sqrt{10}) \\
= & 8 \sqrt{10}+12 \sqrt{10} \\
= & 20 \sqrt{10}
\end{aligned}
$$

Serena needs $20 \sqrt{10} \mathrm{~cm}$ of ribbon.
7. The formula $t=\sqrt{\frac{2 d}{9.8}}$ gives the time, t seconds, for an object at rest to fall d metres. It took 2.5 s for a ball dropped from a roof to hit the ground. To the nearest metre, from what height was the ball dropped?

$$
\begin{aligned}
t & =\sqrt{\frac{2 d}{9.8}} \quad \text { Substitute: } t=2.5 \\
2.5 & =\sqrt{\frac{2 d}{9.8}} \\
(2.5)^{2} & =\left(\sqrt{\frac{2 d}{9.8}}\right)^{2} \\
6.25 & =\frac{2 d}{9.8} \\
61.25 & =2 d \\
d & =30.625
\end{aligned}
$$

The ball was dropped from a height of about 31 m .

