Lesson 3.4 Exercises, pages 217–226

Α

4. Identify the values of *a*, *b*, and *c* to make each quadratic equation match the general form $ax^2 + bx + c = 0$.

```
a) x^2 + 9x - 2 = 0

b) 4x^2 - 11x = 0

Compare each equation to ax^2 + bx + c = 0
```

a = 1, b = 9, c = -2 a = 4, b = -11, c = 0

c) $11x - 3x^2 + 8 = 0$ $-3x^2 + 11x + 8 = 0$ a = -3, b = 11, c = 8d) $3.2x^2 + 6.1 = 0$ a = 3.2, b = 0, c = 6.1 **5.** Simplify each radical expression.

a)
$$\frac{6 \pm \sqrt{16}}{2} = \frac{6 \pm 4}{2}$$

 $\frac{6 \pm 4}{2} = 5; \text{ or } \frac{6 - 4}{2} = 1$
 $= \frac{4(-2 \pm \sqrt{5})}{4}$
 $= -2 \pm \sqrt{5}$

c)
$$\frac{3 \pm \sqrt{45}}{6} = \frac{3 \pm 3\sqrt{5}}{6}$$

= $\frac{3(1 \pm \sqrt{5})}{6}$
= $\frac{1 \pm \sqrt{5}}{6}$
= $\frac{1 \pm \sqrt{5}}{2}$
d) $\frac{12 \pm \sqrt{28}}{4} = \frac{12 \pm 2\sqrt{7}}{4}$
= $\frac{2(6 \pm \sqrt{7})}{4}$
= $\frac{6 \pm \sqrt{7}}{2}$

В

6. Solve each quadratic equation.

a)
$$x^2 + 6x + 4 = 0$$
 b) $x^2 - 10x + 17 = 0$

For each equation, substitute for *a*, *b*, and *c* in:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = 1, b = -6, c = 4$$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(4)}}{2(1)}$$

$$x = \frac{6 \pm \sqrt{20}}{2}$$

$$x = \frac{6 \pm 2\sqrt{5}}{2}$$

$$x = \frac{6 \pm 2\sqrt{5}}{2}$$

$$x = \frac{10 \pm \sqrt{32}}{2}$$

$$x = \frac{10 \pm 4\sqrt{2}}{2}$$

$$x = 5 \pm 2\sqrt{2}$$

c)
$$x^{2} + 4x - 3 = 0$$

 $a = 1, b = 4, c = -3$
 $x = \frac{-4 \pm \sqrt{4^{2} - 4(1)(-3)}}{2(1)}$
 $x = \frac{-4 \pm \sqrt{28}}{2}$
 $x = \frac{-4 \pm 2\sqrt{7}}{2}$
 $x = -2 \pm \sqrt{7}$
d) $2x^{2} - 2x - 1 = 0$
 $a = 2, b = -2, c = -1$
 $x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(2)(-1)}}{2(2)}$
 $x = \frac{2 \pm \sqrt{12}}{4}$
 $x = \frac{2 \pm 2\sqrt{3}}{4}$
 $x = \frac{1 \pm \sqrt{3}}{2}$

7. Solve each quadratic equation.

a)
$$3x^2 = 4x + 1$$
 b) $4x^2 - 1 = -7x$

For each equation, substitute for *a*, *b*, and *c* in:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$3x^2 - 4x - 1 = 0$$

$$a = 3, b = -4, c = -1$$

$$x = \frac{4 \pm \sqrt{(-4)^2 - 4(3)(-1)}}{2(3)}$$

$$x = \frac{4 \pm \sqrt{28}}{6}$$

$$x = \frac{4 \pm 2\sqrt{7}}{6}$$

$$x = \frac{2 \pm \sqrt{7}}{3}$$

$$x = \frac{1}{3}$$

$$x = \frac{-7 \pm \sqrt{65}}{8}$$

c)
$$2x(x-3) = 4(x-3) + 1$$

 $2x^2 - 6x - 4x + 12 - 1 = 0$
 $2x^2 - 10x + 11 = 0$
 $a = 2, b = -10, c = 11$
 $x = \frac{10 \pm \sqrt{(-10)^2 - 4(2)(11)}}{2(2)}$
 $x = \frac{10 \pm \sqrt{12}}{4}$
 $x = \frac{10 \pm 2\sqrt{3}}{4}$
 $x = \frac{5 \pm \sqrt{3}}{2}$
d) $(2x + 1)^2 + 2 = 0$
 $4x^2 + 4x + 1 + 2 = 0$
 $4x^2 + 4x + 3 = 0$
 $a = 4, b = 4, c = 3$
 $x = \frac{-4 \pm \sqrt{4^2 - 4(4)(3)}}{2(4)}$
 $x = \frac{-4 \pm \sqrt{-32}}{8}$
The radicand is negative, so there are no real roots.

8. A student wrote the solution below to solve this quadratic equation: $2x^2 - 3 = 7x$

$$x = -b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$x = -(-7) \pm \frac{\sqrt{(-7)^2 - 4(2)(-3)}}{2(2)}$$
$$x = 7 \pm \frac{\sqrt{73}}{4}$$

Identify the error, then write the correct solution.

The student wrote an incorrect quadratic formula. The correct solution is:

$$x = \frac{7 \pm \sqrt{(-7)^2 - 4(2)(-3)}}{2(2)}$$
$$x = \frac{7 \pm \sqrt{73}}{4}$$

9. a) Solve each equation by factoring.

i)
$$3x^2 = 11x + 20$$

ii) $12x^2 + 8x = 15$
 $3x^2 - 11x - 20 = 0$
 $(3x + 4)(x - 5) = 0$
 $x = -\frac{4}{3}$ or $x = 5$
ii) $12x^2 + 8x - 15 = 0$
 $(2x + 3)(6x - 5) = 0$
 $x = -\frac{3}{2}$ or $x = \frac{5}{6}$

b) Solve each equation in part a using the quadratic formula.

For each equation, substitute for <i>a</i> ,	<i>b</i> , and <i>c</i> in:
$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$	
i) $3x^2 - 11x - 20 = 0$	ii) $12x^2 + 8x - 15 = 0$
a = 3, b = -11, c = -20	a = 12, b = 8, c = -15
$x = \frac{11 \pm \sqrt{(-11)^2 - 4(3)(-20)}}{2(3)}$	$x = \frac{-8 \pm \sqrt{8^2 - 4(12)(-15)}}{2(12)}$
$x=\frac{11\pm\sqrt{361}}{6}$	$x=\frac{-8\pm\sqrt{784}}{24}$
$x=\frac{11\pm19}{6}$	$x=\frac{-8\pm 28}{24}$
$x = \frac{11 + 19}{6} = 5$	$x = \frac{-8 + 28}{24} = \frac{5}{6}$
Or, $x = \frac{11 - 19}{6} = -\frac{4}{3}$	Or, $x = \frac{-8 - 28}{24} = -\frac{3}{2}$

c) Which method do you prefer and why?

I prefer to factor when the numbers are small because it is quicker. I prefer to use the quadratic formula when the numbers are large and I have many factors to guess and test.

10. For each equation, choose a solution strategy, justify your choice, then solve the equation.

a) $2x^{2} + 9x + 8 = 0$ I use the formula because I cannot factor. Substitute: a = 2, b = 9, c = 8in: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-9 \pm \sqrt{9^{2} - 4(2)(8)}}{2(2)}$ $x = \frac{-9 \pm \sqrt{17}}{4}$

c)
$$(x + 6)^2 = 12$$

 $x^2 + 12x + 24 = 0$
I use the formula because I
cannot factor. Substitute:
 $a = 1, b = 12, c = 24$
in: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-12 \pm \sqrt{12^2 - 4(1)(24)}}{2(1)}$
 $x = \frac{-12 \pm \sqrt{48}}{2}$
 $x = \frac{-12 \pm \sqrt{48}}{2}$
 $x = -12 \pm 4\sqrt{3}$
 $x = -6 \pm 2\sqrt{3}$
d) $8 + 5.6x - 1.2x^2 = 0$
I use the formula because I
cannot factor. Substitute:
 $a = -1.2, b = 5.6, c = 8$
in: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
in: $x = \frac{-5.6 \pm \sqrt{5.6^2 - 4(-1.2)(8)}}{2(-1.2)}$
 $x = \frac{-5.6 \pm \sqrt{69.76}}{-2.4}$
 $x = \frac{5.6 \pm \sqrt{69.76}}{2.4}$

11. Solve each quadratic equation. Give the solution to 3 decimal places. **a)** $\frac{1}{3}x^2 - 3x + \frac{1}{4} = 0$ **b)** $-2x^2 + \frac{3}{2}x - \frac{4}{2} = 0$

a)
$$\frac{1}{3}x^2 - 3x + \frac{1}{4} = 0$$

Multiply by 12.
 $4x^2 - 36x + 3 = 0$
Substitute:
 $a = 4, b = -36, c = 3$
in: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{36 \pm \sqrt{(-36)^2 - 4(4)(3)}}{2(4)}$
 $x = \frac{36 \pm \sqrt{1248}}{8}$
so, $x = 8.916$
 $0r, x = \frac{36 - \sqrt{1248}}{8}$
so, $x = 0.084$
b) $-2x^2 + \frac{3}{2}x - \frac{4}{5} = 0$
Multiply by 10.
 $-20x^2 + 15x - 8 = 0$
Substitute:
 $a = -20, b = 15, c = -8$
in: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-15 \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-15 \pm \sqrt{15^2 - 4(-20)(-8)}}{2(-20)}$
 $x = \frac{-15 \pm \sqrt{-415}}{-40}$
There are no real roots.

c)
$$4.9x^2 + 12x - 0.8 = 0$$
 d) $2.1x^2 = 1.2x + 3$
Substitute:
 $a = 4.9, b = 12, c = -0.8$
 $in: x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-12 \pm \sqrt{12^2 - 4(4.9)(-0.8)}}{2(4.9)}$
 $x = \frac{-12 \pm \sqrt{12^2 - 4(4.9)(-0.8)}}{2(4.9)}$
 $x = \frac{1.2 \pm \sqrt{(-1.2)^2 - 4(2.1)(-3)}}{2(2.1)}$
 $x = \frac{-12 \pm \sqrt{159.68}}{9.8}$
 $x = \frac{-12 + \sqrt{159.68}}{9.8}$
 $x = \frac{1.2 \pm \sqrt{26.64}}{4.2}$
 $x = \frac{1.2 + \sqrt{26.64}}{4.2}$
so, $x = 0.065$
or, $x = \frac{-12 - \sqrt{159.68}}{9.8}$
so, $x = -2.514$
or, $x = \frac{-2.514}{4.2}$
so, $x = -0.943$

12. Solve each radical equation. Check for extraneous roots.

a) $2 + \sqrt{5x} = 3x$	b) $2x = \sqrt{2x + 10} - 3$
$\sqrt{5x} = 3x - 2$	$2x+3=\sqrt{2x+10}$
$(\sqrt{5x})^2 = (3x - 2)^2$	$(2x + 3)^2 = (\sqrt{2x + 10})^2$
$5x = 9x^2 - 12x + 4$	$4x^2 + 12x + 9 = 2x + 10$
$9x^2 - 17x + 4 = 0$	$4x^2 + 10x - 1 = 0$
Substitute:	Substitute:
a = 9, b = -17, c = 4	a = 4, b = 10, c = -1
in: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$in: x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$x = \frac{17 \pm \sqrt{(-17)^2 - 4(9)(4)}}{2(9)}$	$x = \frac{-10 \pm \sqrt{10^2 - 4(4)(-1)}}{2(4)}$
$x=\frac{17\pm\sqrt{145}}{18}$	$x=\frac{-10\pm\sqrt{116}}{8}$
Use a calculator to check: The root is: $x = \frac{17 + \sqrt{145}}{18}$	$x=\frac{-10\pm 2\sqrt{29}}{8}$
18	$x=\frac{-5\pm\sqrt{29}}{4}$
	Use a calculator to check:
	The root is: $x = \frac{-5 + \sqrt{29}}{4}$

13. a) Solve this equation using each strategy below: $x^2 - 10x - 24 = 0$

i) the quadratic formula ii) completing the square

$$x^{2} - 10x - 24 = 0$$
Substitute:
 $a = 1, b = -10, c = -24$
in: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x = \frac{10 \pm \sqrt{(-10)^{2} - 4(1)(-24)}}{2(1)}$
 $x = \frac{10 \pm \sqrt{196}}{2}$
 $x = \frac{10 \pm 14}{2}$
 $x = \frac{10 \pm 14}{2}$
 $r = \frac{10 - 14}{2} = -2$
 $x^{2} - 10x - 24 = 0$
 $x^{2} - 10x = 24$
 $x^{2} - 10x + 25 = 24 + 25$
 $(x - 5)^{2} = 49$
 $x - 5 = \pm \sqrt{49}$
 $x = 5 \pm 7$
 $x = 12 \text{ or } x = -2$

iii) factoring $x^2 - 10x - 24 = 0$ (x - 12)(x + 2) = 0x = 12 or x = -2

b) Which strategy do you prefer? Is it the most efficient? Explain.

Sample response: I prefer factoring; it is the most efficient because it takes less time and less space.

- **14.** A person is standing on a bridge over a river. She throws a pebble upward. The height of the pebble above the river, *h* metres, is given by the formula $h = 26 + 9t 4.9t^2$, where *t* is the time in seconds after the pebble is thrown.
 - **a**) When will the pebble be 20 m above the river? Give the answer to the nearest tenth of a second.

In
$$h = 26 + 9t - 4.9t^2$$
, substitute $h = 20$, then solve for t .
 $20 = 26 + 9t - 4.9t^2$
 $0 = 6 + 9t - 4.9t^2$
Substitute: $a = -4.9$, $b = 9$, $c = 6$ in: $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $t = \frac{-9 \pm \sqrt{9^2 - 4(-4.9)(6)}}{2(-4.9)}$
 $t = \frac{9 \pm \sqrt{198.6}}{9.8}$
Ignore the negative root since t cannot be negative.
 $t = \frac{9 + \sqrt{198.6}}{9.8}$
 $t = 2.3563...$
The pebble is 20 m above the river after approximately 2.4 s.

b) When will the pebble be 30 m above the river? Give the answer to the nearest tenth of a second.

In
$$h = 26 + 9t - 4.9t^2$$
, substitute $h = 30$, then solve for t .
 $30 = 26 + 9t - 4.9t^2$
 $0 = -4 + 9t - 4.9t^2$
Substitute: $a = -4.9$, $b = 9$, $c = -4$ in: $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $t = \frac{-9 \pm \sqrt{9^2 - 4(-4.9)(-4)}}{2(-4.9)}$
 $t = \frac{9 \pm \sqrt{2.6}}{9.8}$
 $t = \frac{9 \pm \sqrt{2.6}}{9.8}$, or 1.0829...
 $t = \frac{9 - \sqrt{2.6}}{9.8}$, or 0.7538...

The pebble is 30 m above the river after approximately 0.8 s and 1.1 s.

c) Why are there two answers for part b, but only one answer for part a?

There are two answers for part b because the stone is 30 m above the river on its way up and on its way down. There is only one answer for part a because the stone is only 20 m above the river on its way down.

15. A car was travelling at a constant speed of 19 m/s, then accelerated for 10 s. The distance travelled during this time, *d* metres, is given by the formula $d = 19t + 0.7t^2$, where *t* is the time in seconds since the acceleration began. How long did it take the car to travel 200 m? Give the answer to the nearest tenth of a second.

In $d = 19t + 0.7t^2$, substitute d = 200, then solve for t. $200 = 19t + 0.7t^2$ $0 = -200 + 19t + 0.7t^2$ Substitute: a = 0.7, b = 19, c = -200 in: $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $t = \frac{-19 \pm \sqrt{19^2 - 4(0.7)(-200)}}{2(0.7)}$ $t = \frac{-19 \pm \sqrt{921}}{1.4}$ Ignore the negative root since t cannot be negative. $t = \frac{-19 \pm \sqrt{921}}{1.4}$ t = 8.1057...The car travelled 200 m in approximately 8.1 s.

16. Josie's rectangular garden measures 9 m by 13 m. She wants to double the area of her garden by adding equal lengths to both dimensions. Determine this length to the nearest centimetre.

Let the length added be x metres.
The new width, in metres, is:
$$x + 9$$

The new length, in metres, is: $x + 13$
The new area, in square metres is: $(x + 9)(x + 13)$
The original area is: $(9)(13)$, or 117 m^2
The new area is: $2(117 \text{ m}^2) = 234 \text{ m}^2$
An equation is: $(x + 9)(x + 13) = 234$
 $x^2 + 22x + 117 - 234 = 0$
 $x^2 + 22x - 117 = 0$
Substitute: $a = 1, b = 22, c = -117$ in: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-22 \pm \sqrt{22^2 - 4(1)(-117)}}{2(1)}$
 $x = \frac{-22 \pm \sqrt{952}}{2}$
Ignore the negative root since x cannot be negative.
 $x = \frac{-22 + \sqrt{952}}{2}$
 $x = 4.4272...$
The length added is approximately 4.43 m.

- **17.** a) Solve this equation $\frac{1}{2}x^2 \frac{3}{4}x 1 = 0$ in the two ways described below:
 - i) Substitute the given coefficients and constant in the quadratic formula.

$$\frac{1}{2}x^{2} - \frac{3}{4}x - 1 = 0$$

Substitute: $a = \frac{1}{2}, b = -\frac{3}{4}, c = -1$ in:
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x = \frac{\frac{3}{4} \pm \sqrt{\left(-\frac{3}{4}\right)^{2} - 4\left(\frac{1}{2}\right)(-1)}}{2\left(\frac{1}{2}\right)}$
 $x = \frac{3}{4} \pm \sqrt{\frac{41}{16}}$
 $x = \frac{3}{4} \pm \frac{\sqrt{41}}{4}$

С

ii) Multiply the equation by a common denominator to remove the fractions, then substitute in the quadratic formula.

$$\frac{1}{2}x^{2} - \frac{3}{4}x - 1 = 0 \quad \text{Multiply by 4.}$$

$$2x^{2} - 3x - 4 = 0$$
Substitute: $a = 2, b = -3, c = -4 \text{ in: } x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

$$x = \frac{3 \pm \sqrt{(-3)^{2} - 4(2)(-4)}}{2(2)}$$

$$x = \frac{3 \pm \sqrt{41}}{4}$$

b) Which strategy in part a do you prefer? Explain why.

I prefer the strategy in part ii because it is easier to work with integers than fractions.

18. This quadratic equation has only one root: $2x^2 + 6x + d = 0$ Use the quadratic formula to determine the value of *d*. Explain your strategy.

 $2x^{2} + 6x + d = 0$ Substitute: a = 2, b = 6, c = d in: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-6 \pm \sqrt{6^{2} - 4(2)(d)}}{2(2)}$ The equation has only one root, so the radicand must be 0. 36 - 8d = 0d = 4.5

- **19. a**) Solve this quadratic equation by expanding, simplifying, then
 - applying the quadratic formula: $2(x 5)^2 7(x 5) 2 = 0$

$$2x^{2} - 20x + 50 - 7x + 35 - 2 = 0$$

$$2x^{2} - 27x + 83 = 0$$

Substitute: $a = 2, b = -27, c = 83$ in: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

$$x = \frac{27 \pm \sqrt{(-27)^{2} - 4(2)(83)}}{2(2)}$$

$$x = \frac{27 \pm \sqrt{65}}{4}$$

b) Solve the equation in part a using the quadratic formula without expanding.

 $2(x - 5)^{2} - 7(x - 5) - 2 = 0$ Substitute: a = 2, b = -7, c = -2 in: $x - 5 = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x - 5 = \frac{7 \pm \sqrt{(-7)^{2} - 4(2)(-2)}}{4}$ $x - 5 = \frac{7 \pm \sqrt{65}}{4}$ $x = 5 + \frac{7 \pm \sqrt{65}}{4}$ $x = \frac{27 \pm \sqrt{65}}{4}$

20. a) Is this equation quadratic: $x^4 + x^2 = 1$? Justify your response.

The equation is not quadratic because it contains an x^4 -term.

b) Describe a strategy you could use to solve the equation in part a.

Write the equation as: $(x^2)^2 + (x^2) - 1 = 0$, then use the quadratic formula.

c) Solve the equation in part a.

Substitute:
$$a = 1, b = 1, c = -1$$
 in: $x^2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x^2 = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)}$
 $x^2 = \frac{-1 \pm \sqrt{5}}{2}$ Since x^2 is positive, ignore the negative root.
 $x = \pm \sqrt{\frac{-1 \pm \sqrt{5}}{2}}$