Α

4. Calculate the value of the discriminant for each quadratic equation.

a) $5x^2 - 9x + 4 = 0$ ln $b^2 - 4ac$, substitute: a = 5, b = -9, c = 4 $b^2 - 4ac = (-9)^2 - 4(5)(4)$ = 1b) $3x^2 + 7x - 2 = 0$ ln $b^2 - 4ac$, substitute: a = 3, b = 7, c = -2 $b^2 - 4ac = (7)^2 - 4(3)(-2)$ = 73c) $18x^2 - 12x = 0$ d) $6x^2 + 7 = 0$

In $b^2 - 4ac$, substitute: a = 18, b = -12, c = 0 $b^2 - 4ac = (-12)^2 - 4(18)(0)$ = 144In $b^2 - 4ac$, substitute: a = 6, b = 0, c = 7 $b^2 - 4ac = (0)^2 - 4(6)(7)$ = -168 **5.** The values of the discriminant for some quadratic equations are given. How many roots does each equation have?

a) $b^2 - 4ac = 36$

The discriminant is positive, so there are 2 real roots.

b) $b^2 - 4ac = 80$

The discriminant is positive, so there are 2 real roots.

c) $b^2 - 4ac = 0$

The discriminant is 0, so there is 1 real root.

d) $b^2 - 4ac = -4$

The discriminant is negative, so there are no real roots.

- **6.** The values of the discriminant for some quadratic equations are given, where *a*, *b*, and *c* are integers. In each case, are the roots rational or irrational and can the equation be solved by factoring?
 - **a**) $b^2 4ac = 45$

The square root of the discriminant is irrational, so the roots are irrational and the equation cannot be solved by factoring.

b) $b^2 - 4ac = -16$

The square root of the discriminant is not a real number, so there are no real roots.

c) $b^2 - 4ac = 100$

The square root of the discriminant is rational, so the roots are rational and the equation can be solved by factoring.

d) $b^2 - 4ac = 0$

The discriminant is 0, so the root is rational and the equation can be solved by factoring.

В

7. Without solving each equation, determine whether it has one, two, or no real roots. Justify your answer.

```
a) 2x^2 - 9x + 4 = 0

\ln b^2 - 4ac, substitute: a = 2, b = -9, c = 4

b^2 - 4ac = (-9)^2 - 4(2)(4)

= 49

Since b^2 - 4ac > 0, the equation has 2 real roots.
```

b) $-x^2 - 7x + 5 = 0$ ln $b^2 - 4ac$, substitute: a = -1, b = -7, c = 5 $b^2 - 4ac = (-7)^2 - 4(-1)(5)$ = 69Since $b^2 - 4ac > 0$, the equation has 2 real roots.

c) $2x^2 + 16x + 32 = 0$ $\ln b^2 - 4ac$, substitute: a = 2, b = 16, c = 32 $b^2 - 4ac = 16^2 - 4(2)(32)$ = 0Since $b^2 - 4ac = 0$, the equation has 1 real root.

d)
$$2.55x^2 - 1.4x - 0.2 = 0$$

 $\ln b^2 - 4ac$, substitute: $a = 2.55$, $b = -1.4$, $c = -0.2$
 $b^2 - 4ac = (-1.4)^2 - 4(2.55)(-0.2)$
 $= 4$
Since $b^2 - 4ac > 0$, the equation has 2 real roots.

8. Determine the values of *k* for which each equation has two real roots, then write a possible equation.

```
a) kx^{2} + 6x - 1 = 0

For an equation to have 2 real roots, b^{2} - 3x + k = 0

For an equation to have 2 real roots, b^{2} - 4ac > 0

a = k, b = 6, c = -1

a = 6, b = -3, c = k

So, 6^{2} - 4(k)(-1) > 0

4k > -36

k > -9

Sample response:

10x^{2} + 6x - 1 = 0

b) 6x^{2} - 3x + k = 0

a = 6, b = -3, c = k

So, (-3)^{2} - 4(6)(k) > 0

k < \frac{9}{24}, or \frac{3}{8}
```

9. Determine the values of *k* for which each equation has exactly one real root, then write a possible equation.

a) $2x^2 - kx + 18 = 0$ **b**) $kx^2 - 10x - 3 = 0$ For an equation to have exactly 1 real root, $b^2 - 4ac = 0$ a = 2, b = -k, c = 18a = k, b = -10, c = -3So, So, $(-10)^2 - 4(k)(-3) = 0$ $(-k)^2 - 4(2)(18) = 0$ 12k = -100k = $-\frac{100}{12}$, or $-\frac{25}{3}$ $k^2 = 144$ $k = \pm 12$ Sample response: Sample response: $-\frac{25}{3}x^2 - 10x - 3 = 0$ $2x^2 - 12x + 18 = 0$ or, $25x^2 + 30x + 9 = 0$ or, $x^2 - 6x + 9 = 0$

10. Determine the values of *k* for which each equation has no real roots, then write a possible equation.

```
a) kx^2 - 9x - 3 = 0

For an equation to have no real roots, b^2 - 4ac < 0

Substitute: a = k, b = -9, c = -3

(-9)^2 - 4(k)(-3) < 0

12k < -81

k < -\frac{81}{12}, \text{ or } -\frac{27}{4}

Sample response: -10x^2 - 9x - 3 = 0

b) 7x^2 - 6x + k = 0

In b^2 - 4ac < 0, substitute: a = 7, b = -6, c = k

(-6)^2 - 4(7)(k) < 0

28k > 36

k > \frac{36}{28}, \text{ or } \frac{9}{7}

Sample response: 7x^2 - 6x + 2 = 0
```

11. Can each equation be solved by factoring? If your answer is yes, solve it by factoring. If your answer is no, solve it using a different strategy.

a)
$$7x^2 - 8x - 12 = 0$$

An equation factors if its discriminant is a perfect square. In $b^2 - 4ac$, substitute: a = 7, b = -8, c = -12 $b^2 - 4ac = (-8)^2 - 4(7)(-12)$ = 400 This is a perfect square. The equation can be solved by factoring. $7x^2 - 8x - 12 = 0$ (7x + 6)(x - 2) = 0 $x = -\frac{6}{7}$ or x = 2

b)
$$14x^2 - 63x - 70 = 0$$

Divide by 7. $2x^{2} - 9x - 10 = 0$ In $b^{2} - 4ac$, substitute: a = 2, b = -9, c = -10 $b^{2} - 4ac = (-9)^{2} - 4(2)(-10)$ = 161 This is not a perfect square. The equation cannot be solved by factoring. Substitute: a = 2, b = -9 in: $x = \frac{-b \pm \sqrt{161}}{2a}$ $x = \frac{9 \pm \sqrt{161}}{2(2)}$ $x = \frac{9 \pm \sqrt{161}}{4}$

12. For each equation below:

- i) Determine the value of the discriminant.
- **ii**) Use the value of the discriminant to choose a solution strategy, then solve the equation.

a) $2x^2 - 6x + 1 = 0$	b) $8x^2 - 3x - 5 = 0$
i) In $b^2 - 4ac$, substitute:	i) In $b^2 - 4ac$, substitute:
a = 2, b = -6, c = 1	a = 8, b = -3, c = -5
$b^2 - 4ac = (-6)^2 - 4(2)(1)$	$b^2 - 4ac = (-3)^2 - 4(8)(-5)$
= 28	= 169
ii) This is not a perfect square,	ii) This is a perfect square, so
so use the quadratic formula.	use factoring.
Substitute: $a = 2$, $b = -6$ in:	$8x^2-3x-5=0$
$x=\frac{-b\pm\sqrt{28}}{2a}$	(8x + 5)(x - 1) = 0
$x=\frac{6\pm\sqrt{28}}{2(2)}$	$x = -\frac{5}{8}$ or $x = 1$
$x=\frac{3\pm\sqrt{7}}{2}$	

- **13.** A model rocket is launched. Its height, *h* metres, after *t* seconds is described by the formula $h = 23t 4.9t^2$. Without solving an equation, determine whether the rocket reaches each height.
 - **b**) 30 m **a**) 20 m $\ln h = 23t - 4.9t^2$, substitute: $\ln h = 23t - 4.9t^2$, substitute: h = 20h = 30 $20 = 23t - 4.9t^2$ $30 = 23t - 4.9t^2$ $0 = -20 + 23t - 4.9t^2$ $0 = -30 + 23t - 4.9t^2$ If the rocket reaches a height If the rocket reaches a height of 20 m, then the equation of 30 m, then the equation has real roots. has real roots. $\ln b^2 - 4ac$, substitute: $\ln b^2 - 4ac$, substitute: a = -4.9, b = 23, c = -20a = -4.9, b = 23, c = -30 $b^{2} - 4ac = 23^{2} - 4(-4.9)(-20)$ $b^{2} - 4ac = 23^{2} - 4(-4.9)(-30)$ = -59 = 137 Since the discriminant is Since the discriminant is positive, the equation has negative, the equation has real roots, and the rocket no real roots, and the rocket reaches a height of 20 m. does not reach a height of 30 m.

14. Create three different quadratic equations whose discriminant is 64. Explain your strategy. What is true about these three equations?

```
Sample response:

Use guess and test to determine 3 values of a, b, and c so that:

b^2 - 4ac = 64 Substitute: b = 0

Then -4ac = 64, which is satisfied by a = -4 and c = 4

So, one equation is: -4x^2 + 4 = 0

b^2 - 4ac = 64 Substitute: b = 4

Then 16 - 4ac = 64, and -4ac = 48, which is satisfied by a = -3 and c = 4

So, another equation is: -3x^2 + 4x + 4 = 0

b^2 - 4ac = 64 Substitute: b = 2

Then 4 - 4ac = 64, and -4ac = 60, which is satisfied by a = 5 and c = -3

So, another equation is: 5x^2 + 2x - 3 = 0

All 3 equations have 2 rational real roots.
```

С

15. Consider the equation $5x^2 + 6x + k = 0$. Determine two positive values of k for which this equation has two rational roots.

```
To be able to factor, the discriminant must be a perfect square.

In b^2 - 4ac, substitute: a = 5, b = 6, c = k

6^2 - 4(5)(k) = 36 - 20k

Use guess and test.

One perfect square is 16.

36 - 20k = 16

20k = 20

k = 1

Another perfect square is 4.

36 - 20k = 4

20k = 32

k = \frac{32}{20}, or 1.6
```

16. Create a quadratic equation so that *a*, *b*, and *c* are real numbers; the value of the discriminant is a perfect square; but the roots are not rational. Justify your solution by determining the value of the discriminant and the roots of the equation.

```
Sample response: The equation has the form ax^2 + bx + c = 0
Consider the quadratic formula:
```

```
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
If the roots are not rational, then a or b is irrational.
Use guess and test. Suppose b = \sqrt{5}.
Then b^2 - 4ac must be a perfect square.
Substitute: b = \sqrt{5}
5 - 4ac must be a perfect square, such as 25.
5 - 4ac = 25
4ac = -20
ac = -5, which is satisfied by a = 1, c = -5
An equation is: x^2 + \sqrt{5x} - 5 = 0
The discriminant is 25.
The roots are: x = \frac{-\sqrt{5} \pm 5}{2}
```

- **17.** Consider the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
 - a) Write expressions for the two roots of the quadratic equation $ax^2 + bx + c = 0.$

The two roots are: $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

b) Add the expressions. How is this sum related to the coefficients of the quadratic equation?

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-2b}{2a}, \text{ or } -\frac{b}{a}$$

The sum of the roots is the opposite of the quotient of the coefficient of x and the coefficient of x^2 .

c) Multiply the expressions. How is this product related to the coefficients of the quadratic equation?

$$\frac{\left(-b + \sqrt{b^2 - 4ac}\right)}{2a} \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)$$
$$= \frac{b^2 - (b^2 - 4ac)}{4a^2}$$
$$= \frac{4ac}{4a^{2\prime}}, \text{ or } \frac{c}{a}$$

The product of the roots is the quotient of the constant term and the coefficient of x^2 .

d) Use the results from parts b and c to write an equation whose roots are $x = -3 \pm \sqrt{11}$.

$$-\frac{b}{a} = (-3 + \sqrt{11}) + (-3 - \sqrt{11})$$

$$-\frac{b}{a} = -6, \text{ or } \frac{-6}{1}$$

$$\frac{c}{a} = (-3 + \sqrt{11})(-3 - \sqrt{11})$$

$$= 9 - 11$$

$$\frac{c}{a} = -2, \text{ or } \frac{-2}{1}$$

So, $a = 1, b = 6$, and $c = -2$
An equation is: $x^2 + 6x - 2 = 0$