Lesson 4.3 Math Lab: Assess Your Understanding, pages 269-271

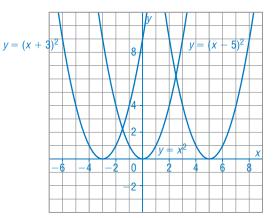
1. Complete this table for the graph of each function.

Function	Direction of opening	Vertex	Axis of symmetry	Congruent to $y = x^2$?
$y = x^2$	up	(0, 0)	x = 0	yes
$y = (x - 7)^2$	up	(7, 0)	<i>x</i> = 7	yes
$y = (x + 8)^2$	up	(-8, 0)	x = -8	yes
$y = x^2 + 7$	up	(0, 7)	x = 0	yes
$y = x^2 - 8$	up	(0, -8)	x = 0	yes
$y=7x^2$	up	(0, 0)	x = 0	no
$y = -7x^2$	down	(0, 0)	x = 0	no

2. On grid paper, graph $y = x^2$. Graph each quadratic function without using a table of values or a graphing calculator. Explain your strategy each time.

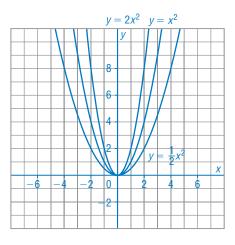
a)
$$y = x^2 + 5$$
 $y = x^2 - 4$

Ø


I translate the graph of $y = x^2$ 5 units up to get the graph of $y = x^2 + 5$. I translate the graph of $y = x^2$ 4 units down to get the graph of $y = x^2 - 4$.

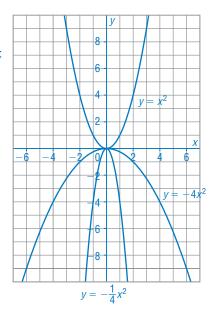
b)
$$y = (x + 3)^2$$
 $y = (x - 5)^2$

0


I translate the graph of $y = x^2$ 3 units left to get the graph of $y = (x + 3)^2$. I translate the graph of $y = x^2$ 5 units right to get the graph of $y = (x - 5)^2$.

c)
$$y = 2x^2$$
 $y = \frac{1}{2}x^2$

0


I double the y-coordinate of each point on the graph of $y = x^2$ to get the graph of $y = 2x^2$. I halve the y-coordinate of each point on the graph of $y = x^2$ to get the graph of $y = \frac{1}{2}x^2$.

d)
$$y = -4x^2$$
 $y = -\frac{1}{4}x^2$

I multiply the *y*-coordinate of each point on the graph of $y = x^2$ by 4, then reflect the point in the *x*-axis to get the graph of $y = -4x^2$. I divide the *y*-coordinate of each point on the graph of $y = x^2$ by 4, then reflect the point in the *x*-axis to get the graph of $y = -\frac{1}{4}x^2$.

- **3.** The graph of $y = x^2$ is translated as described below. Without graphing, write the equation of the graph in its new position.
 - a) a translation of 30 units left
- b) a translation of 250 units up

0

$$y=(x+30)^2$$

$$y=x^2+250$$

c) a translation of 21 units right d) a translation of 83 units down

$$y=(x-21)^2$$

$$y = x^2 - 83$$

- **4.** What happens to the axis of symmetry of the parabola in each case?
 - a) The graph of $y = x^2$ is translated 5 units left.

The axis of symmetry moves 5 units left.

b) The graph of $y = x^2$ is translated 5 units down.

The axis of symmetry does not move.

11