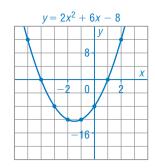
REVIEW, pages 330-335

4.1

1. a) Use a table of values to graph $y = 2x^2 + 6x - 8$.

x	-5	-4	-3	-2	-1	0	1	2
У	12	0	-8	-12	-12	-8	0	12



b) Determine:

- i) the intercepts ii) the coordinates of the vertex
- iii) the equation of the axis of symmetry
- iv) the domain of the function v) the range of the function

Give the values to the nearest tenth where necessary.

- i) x-intercepts: -4, 1 y-intercept: -8
 ii) From the graph, the axis of symmetry is midway between x = -1 and x = -2. So, the equation of the axis of symmetry is x = -1.5. When x = -1.5, y = 2(-1.5)² + 6(-1.5) - 8, or -12.5 The coordinates of the vertex are: (-1.5, -12.5)
 iii) axis of symmetry: x = -1.5
 iv) domain: x ∈ ℝ
 v) range: y ≥ -12.5, y ∈ ℝ
- **2.** Which of these tables of values represents a quadratic function? Justify your response.

a) 🔳						b)						
ر ر	c ()	1	2	3	0)	x	0	1	2	3	
J	/ 3	3	-3	-13	-27		у	1	3	5	7	
b Fi Ti 4	The x-coordinates increase by 1 each time. First differences: -3 - 3 = -6 -13 - (-3) = -10 -27 - (-13) = -14 The first differences decrease by 4 each time. So, the function is quadratic.						by 1 Firs 3 - 5 - 7 - The con	eac t diff 1 = 3 = 5 = first	h tin eren 2 2 2 3 diffe	ne. ices: eren	s incr ces a funct	

3. Use graphing technology to approximate the solution of the equation below. Write the roots to 3 decimal places.

 $3x^2 + 6x - 70 = 0$

Graph $y = 3x^2 + 6x - 70$. Use the CALC feature to display X = -5.932883 and X = 3.9328829. The roots are approximately x = -5.933 and x = 3.933.

4.3

4. For each pair of quadratic functions, describe how their graphs are related.

a)
$$y = (x - 3)^2$$
; $y = (x + 2)^2$

Compare the equations with $y = (x - p)^2$. $y = (x - 3)^2$: Its graph is the graph of $y = x^2$ translated 3 units to the right. $y = (x + 2)^2$: Its graph is the graph of $y = x^2$ translated 2 units to the left. So, the graph of $y = (x - 3)^2$ is translated 5 units left to get the graph of $y = (x + 2)^2$.

b)
$$y = x^2 + 5; y = x^2 - 1$$

Compare the equations with $y = x^2 + q$. $y = x^2 + 5$: Its graph is the graph of $y = x^2$ translated 5 units up. $y = x^2 - 1$: Its graph is the graph of $y = x^2$ translated 1 unit down. So, the graph of $y = x^2 + 5$ is translated 6 units down to get the graph of $y = x^2 - 1$.

c) $y = -\frac{1}{2}x^2$; $y = \frac{1}{2}x^2$

Compare the equations with $y = ax^2$. $y = -\frac{1}{2}x^2$: Its graph is the graph of $y = x^2$ compressed by a vertical factor of $\frac{1}{2}$, then reflected in the *x*-axis. $y = \frac{1}{2}x^2$: Its graph is the graph of $y = x^2$ compressed by a vertical factor of $\frac{1}{2}$. So, the graph of $y = -\frac{1}{2}x^2$ is reflected in the *x*-axis to get the graph of $y = \frac{1}{2}x^2$.

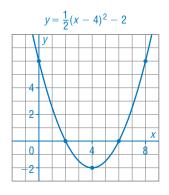
5. For this quadratic function: $y = \frac{1}{2}(x - 4)^2 - 2$

a) Identify the coordinates of the vertex, the domain, the range, the direction of opening, the equation of the axis of symmetry, and the intercepts.

a is positive, so the graph opens up. p = 4 and q = -2, so the coordinates of the vertex are: (4, -2)The equation of the axis of symmetry is x = p; that is, x = 4. To determine the *y*-intercept, substitute x = 0: $y = \frac{1}{2}(0 - 4)^2 - 2$ $v = \bar{6}$ The y-intercept is 6. To determine the x-intercepts, substitute y = 0: $0 = \frac{1}{2}(x-4)^2 - 2$ $0 = \frac{x^2}{2} - 4x + 6$ $0 = x^2 - 8x + 12$ 0 = (x - 6)(x - 2)x = 6 or x = 2The *x*-intercepts are 2 and 6. The domain is: $x \in \mathbb{R}$ The graph opens up, so the vertex is a minimum point with *y*-coordinate -2. The range is: $y \ge -2$, $y \in \mathbb{R}$

b) Sketch a graph.

The graph is congruent to the graph of $y = \frac{1}{2}x^2$. On a grid, mark a point at the vertex (4, -2). Use the step pattern. Multiply each vertical step by $\frac{1}{2}$.



- **6.** Determine an equation of the quadratic function for each set of data given.
 - **a**) The coordinates of the vertex are V(4, 12) and the graph passes through A(7, 6).

```
An equation has the form y = a(x - p)^2 + q.

The vertex is at V(4, 12), so p = 4 and q = 12.

The equation becomes y = a(x - 4)^2 + 12.

Substitute the given coordinates for point A: x = 7, y = 6

6 = a(7 - 4)^2 + 12

6 = 9a + 12

-6 = 9a

a = -\frac{2}{3}

So, the equation of the function is:

y = -\frac{2}{3}(x - 4)^2 + 12
```

b) The graph passes through B(2, -5) and has *x*-intercepts -3 and 4.

```
Use y = a(x - x_1)(x - x_2) Substitute: x_1 = -3 and x_2 = 4

y = a(x + 3)(x - 4) Substitute for B(2, -5).

-5 = a(2 + 3)(2 - 4)

-5 = -10a

a = 0.5

In factored form, the equation is: y = 0.5(x + 3)(x - 4)
```

7. Write this equation in standard form.

$$y = -3x^{2} + 24x - 45$$

$$y = -3(x^{2} - 8x) - 45$$

Add and subtract: $\left(\frac{-8}{2}\right)^{2} = 16$

$$y = -3(x^{2} - 8x) - 45$$

$$= -3(x^{2} - 8x + 16 - 16) - 45$$

$$= -3(x^{2} - 8x + 16) + 48 - 45$$

$$= -3(x - 4)^{2} + 3$$

4.6

- 8. Determine the intercepts, the equation of the axis of symmetry, and the coordinates of the vertex of the graph of each quadratic function, then sketch the graph.
 - **b**) $y = -\frac{1}{2}x^2 x + 4$ a) $y = 2x^2 + 2x - 24$ The *y*-intercept is -24. Factor the equation. $y = 2x^2 + 2x - 24$ $= 2(x^2 + x - 12)$ = 2(x + 4)(x - 3)The *x*-intercepts are: -4 and 3 The mean of the intercepts is: $\frac{-4+3}{2} = -0.5$ So, the equation of the axis of symmetry is: x = -0.5Substitute x = -0.5 in $y = 2x^2 + 2x - 24$ $= 2(-0.5)^{2} + 2(-0.5) - 24$ = -24.5The coordinates of the vertex are: (-0.5, -24.5) $y = 2x^2 + 2x - 24$ • 0

10 ጶበ 30

The y-intercept is 4.
Factor the equation.

$$y = -\frac{1}{2}x^2 - x + 4$$

$$= -\frac{1}{2}(x^2 + 2x - 8)$$

$$= -\frac{1}{2}(x + 4)(x - 2)$$
The x-intercepts are: -4 and 2
The mean of the intercepts is:

$$\frac{-4 + 2}{2} = -1$$
So, the equation of the axis of
symmetry is: $x = -1$
Substitute $x = -1$ in

$$y = -\frac{1}{2}x^2 - x + 4$$

$$= -\frac{1}{2}(-1)^2 + 1 + 4$$

$$= 4.5$$
The coordinates of the vertex
are: (-1, 4.5)

$$y = -0.5x^2 - x + 4$$

9. Select Audio Company sells an MP3 player for \$75. At that price, the company sells approximately 1000 players per week. The company predicts that for every \$5 increase in price, it will sell 50 fewer MP3 players. Which price for an MP3 player will maximize the revenue?

Let x represent the number of \$5 increases in the price of an MP3 player. When the cost is \$75, 1000 are sold for a revenue of: \$75(1000) = \$75 000 When the cost is (75 + 5x), (1000 - 50x) are sold for a revenue of (75 + 5x)(1000 - 50x). Let the revenue be *R* dollars. An equation is: R = (75 + 5x)(1000 - 50x)Use a graphing calculator to graph the equation. From the graph, the maximum revenue is about \$76 562.50 when the number of \$5 increases is 2.5. The number of increases is a whole number, so round 2.5 to 2 or to 3. Two increases of \$5 mean that the MP3 player will now cost: 2(\$5) + \$75 = \$85Three increases of \$5 mean that the MP3 player will now cost: 3(\$5) + \$75 = \$90To maximize the revenue, the MP3 player should sell for \$85 or \$90.