Lesson 5.2 Exercises, pages 360-368

Α

3. Determine whether each point is a solution of the given inequality.

a)
$$3x - 2y \ge -16$$
 $A(-3, 4)$

In the inequality, substitute: x = -3, y = 4L.S.: 3(-3) - 2(4) = -17R.S. = -16Since the L.S. < R.S., the point is not a solution.

b)
$$4x - y \le 5$$
 $B(-1, 1)$

In the inequality, substitute: x = -1, y = 1L.S.: 4(-1) - 1 = -5R.S. = 5Since the L.S. < R.S., the point is a solution.

c)
$$3y > 2x - 7$$
 $C(-2, -5)$

In the inequality, substitute: x = -2, y = -5L.S.: 3(-5) = -15R.S.: 2(-2) - 7 = -11Since the L.S. < R.S., the point is not a solution.

d)
$$5x - 2y + 8 < 0$$
 D(6, 7)

In the inequality, substitute: x = 6, y = 7L.S.: 5(6) - 2(7) + 8 = 24Since the L.S. > R.S., the point is not a solution.

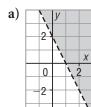
4. Match each graph with an inequality below.

i)
$$2x + y \le -2$$

iii)
$$x - 2y < 2$$

ii)
$$2x + y > 2$$

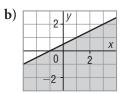
iv)
$$x - 2y \ge -1$$



The line has slope -2and y-intercept 2, so its equation is:

$$y = -2x + 2$$
, or $2x + y = 2$
The inequality is:

2x + y > 2

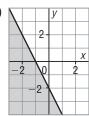


The line has slope 0.5 and y-intercept 0.5, so its equation is:

y = 0.5x + 0.5, or x - 2y = -1

The inequality is:

 $x - 2y \ge -1$

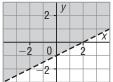


The line has slope -2 and y-intercept -2, so its equation is:

$$y = -2x - 2$$
, or $2x + y = -2$
The inequality is:

$$2x + y \leq -2$$

d)



The line has slope 0.5 and y-intercept −1, so its

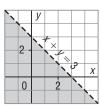
equation is:

$$y = 0.5x - 1$$
, or $x - 2y = 2$

The inequality is:

$$x-2y<2$$

5. Write an inequality to describe each graph.



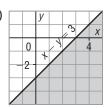
The equation can be written as: y = -x + 3

The line is broken, and the shaded region is below the line so an

inequality is: y < -x + 3,

or x + y < 3

b)



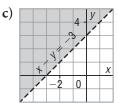
The equation can be

written as: y = x - 3

The line is solid, and the shaded region is

below the line so an inequality is: $y \le x - 3$,

or $x - y \ge 3$



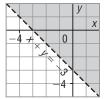
The equation can be written as: y = x + 3

The line is broken, and the shaded region is above the line so an

inequality is: y > x + 3,

or
$$x - y < -3$$

d)



The equation can be

written as: y = -x - 3

The line is broken, and the shaded region is

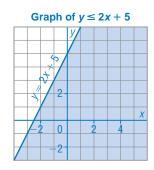
above the line so the

inequality is: y > -x - 3,

or
$$x + y > -3$$

6. Graph each linear inequality.

a)
$$y \le 2x + 5$$



b)
$$y > -\frac{1}{3}x + 1$$

Use intercepts to graph the related functions.

When
$$x = 0$$
, $y = 5$

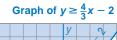
When
$$y = 0$$
, $x = -2.5$

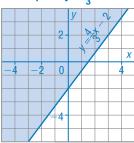
When
$$x = 0$$
, $y = 1$

When
$$y = 0, x = 3$$

c)
$$y < -4x - 4$$

$$\mathbf{d}) \ y \ge \frac{4}{3}x - 2$$





Use intercepts to graph the related functions.

When
$$x = 0$$
, $y = -4$

When
$$y = 0, x = -1$$

the region below the line.

When
$$x = 0$$
, $y = -2$

When
$$y = 0, x = 1.5$$

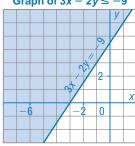
Draw a solid line. Shade the region above the line. **7.** Graph each linear inequality. Give the coordinates of 3 points that satisfy the inequality.

a)
$$5x + 3y > 15$$

Graph of
$$5x + 3y > 15$$

b)
$$3x - 2y \le -9$$

Graph of
$$3x - 2y \le -9$$



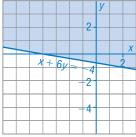
Use intercepts to graph the related functions.

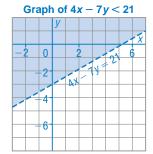
When
$$x = 0$$
, $y = 5$
When $y = 0$, $x = 3$
Use $(0, 0)$ as a test point.
L.S. = 0; R.S. = 15
Since $0 < 15$, the origin does not lie in the shaded region.
Draw a broken line. Shade the region above the line.
From the graph, 3 points that satisfy the inequality are: $(2, 3)$, $(1, 5)$, $(3, 2)$

When
$$x = 0$$
, $y = 4.5$
When $y = 0$, $x = -3$
Use $(0, 0)$ as a test point.
L.S. = 0; R.S. = -9
Since $0 > -9$, the origin
does not lie in the shaded region.
Draw a solid line. Shade
the region above the line.
From the graph, 3 points
that satisfy the inequality
are: $(-2, 3)$, $(-1, 4)$, $(-1, 6)$

c)
$$x + 6y \ge -4$$

d)
$$4x - 7y < 21$$





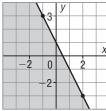
Graph the related functions.

When
$$y = 0$$
, $x = -4$
When $y = -1$, $x = 2$
Use $(0, 0)$ as a test point.
L.S. = 0; R.S. = -4
Since $0 > -4$, the origin lies in the shaded region.
Draw a solid line. Shade the region above the line.
From the graph, 3 points that satisfy the inequality are: $(2, 1)$, $(1, 2)$, $(3, 3)$

When
$$x = 0$$
, $y = -3$
When $y = 1$, $x = 7$
Use $(0, 0)$ as a test point.
L.S. = 0; R.S. = 21
Since $0 < 21$, the origin
lies in the shaded region.
Draw a broken line. Shade
the region above the line.
From the graph, 3 points
that satisfy the inequality
are: $(-1, 3)$, $(1, -1)$, $(2, 3)$

8. Write an inequality to describe each graph.

a) |



The line has slope -2 and y-intercept 1, so its equation is: y = -2x + 1The line is solid and the region below is shaded. An inequality is: $y \le -2x + 1$

The line has slope $\frac{3}{4}$ and y-intercept 5, so its equation is: $y = \frac{3}{4}x + 5$, The line is broken and the region below is shaded. An inequality is: $y < \frac{3}{4}x + 5$

9. A student graphed the inequality 2x - y < 0 and used the origin as a test point. Could the student then shade the correct region of the graph? Explain your answer.

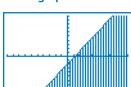
No, the line passes through the origin, so it cannot be used as a test point. The test point must not lie on the line that divides the region.

10. Use technology to graph each linear inequality. Sketch the graph.

a)
$$y < 1.6x - 1.95$$

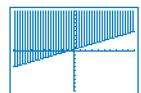
Graph: y = 1.6x - 1.95The boundary is not part

The boundary is not part of the graph.



b)
$$y > \frac{4}{9}x + \frac{3}{7}$$

Graph: $y = \frac{4}{9}x + \frac{3}{7}$ The boundary is not part of the graph.

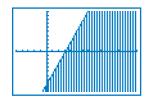


c)
$$8x - 3y - 25 \ge 0$$

$$3y \le 8x - 25$$
$$y \le \frac{8}{3}x - \frac{25}{3}$$

Graph:
$$y = \frac{8}{3}x - \frac{25}{3}$$

The boundary is part of the graph.



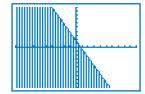
d)
$$4.8x + 2.3y - 3.7 \le 0$$

$$2.3y \le -4.8x + 3.7$$

$$y \le \frac{-4.8}{2.3}x + \frac{3.7}{2.3}$$

Graph:
$$y = \frac{-4.8}{2.3}x + \frac{3.7}{2.3}$$

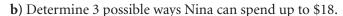
The boundary is part of the graph.



- **11.** Nina takes her friends to an ice cream store. A milkshake costs \$3 and a chocolate sundae costs \$2.50. Nina has \$18 in her purse.
 - a) Write an inequality to describe how Nina can spend her money.

Let *m* represent the number of milkshakes and *s* represent the number of sundaes.

An inequality is: $3m + 2.5s \le 18$



Determine the coordinates of 2 points that satisfy the related function.

When
$$s = 0, m = 6$$

When
$$s = 6$$
, $m = 1$

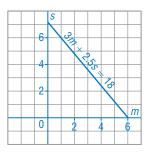
Join the points with a solid line.

The solution is the points, with whole-number

coordinates, on and below the line.

Three ways are: 4 milkshakes, 2 sundaes; 3 milkshakes, 3 sundaes;

2 milkshakes, 4 sundaes



c) What is the most money Nina can spend and still have change from \$18?

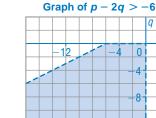
The point, with whole-number coordinates, that is closest to the line has coordinates (5, 1); the cost, in dollars, is:

$$(5)(3) + 1(2.50) = 17.50$$

Nina can spend \$17.50 and still have change.

- **12.** The relationship between two negative numbers p and q is described by the inequality p-2q>-6.
 - a) What are the restrictions on the variables?

Since the numbers are negative, p < 0 and q < 0



Determine the coordinates of 2 points that satisfy

the related function.

When
$$p = -10$$
, $q = -2$

When
$$p = -6$$
, $q = 0$

Draw a broken line through the points.

The solution is the points below

the line in Quadrant 3.

c) Write the coordinates of 2 points that satisfy the inequality.

Sample response: Two points are: (-4, -4) and (-12, -4)

13. Graph each inequality for the given restrictions on the variables.

a)
$$y > -3x + 4$$
; for $x > 0$, $y > 0$

Since x > 0, y > 0, the graph is in Quadrant 1.

The graph of the related function has slope -3 and y-intercept 4.

Draw a broken line to represent the

related function in Quadrant 1.

Shade the region above the line.

The axes bounding the graph are broken lines.

b)
$$2x - 3y < 6$$
; for $x \ge 0, y \le 0$

Since $x \ge 0$, $y \le 0$, the graph is in Quadrant 4.

Graph the related function.

When
$$y = 0, x = 3$$

When
$$x = 0$$
, $y = -2$

Draw a broken line in Quadrant 4.

Use (0, 0) as a test point.

$$L.S. = 0; R.S. = 6$$

Since 0 < 6, the origin lies in the shaded region.

Shade the region above the line.

c)
$$4x + 5y - 20 > 0$$
; for $x \le 0, y \ge 0$

Since $x \le 0$, $y \ge 0$, the graph is in Quadrant 2.

Graph the related function.

When
$$x = 0$$
, $y = 4$

When
$$x = -5$$
, $y = 8$

Draw a broken line in Quadrant 2.

Use (0, 0) as a test point.

$$L.S. = -20$$
; $R.S. = 0$

Since -20 < 0, the origin does not lie in the shaded region.

Shade the region above the line.

14. a) For A(9, a) to be a solution of 3x - 2y < 5, what must be true about a?

Substitute the coordinates of A in the inequality.

$$3(9) - 2(a) < 5$$
 Solve for a.

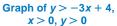
b) For B(b, -3) to be a solution of $3x + 4y \ge -12$, what must be true about b?

Substitute the coordinates of B in the inequality.

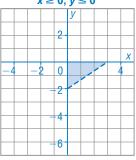
$$3(b) + 4(-3) \ge -12$$
 Solve for b.

$$3b \ge 0$$

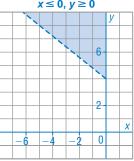
$$b \ge 0$$



Graph of 2x - 3y < 6, $x \ge 0$, $y \le 0$



Graph of 4x + 5y - 20 > 0, $x \le 0, y \ge 0$

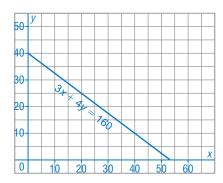


- **15.** A personal trainer books clients for either 45-min or 60-min appointments. He meets with clients a maximum of 40 h each week.
 - a) Write an inequality that represents the trainer's weekly appointments.

```
Let x represent the number of 45-min appointments and y represent the number of 60-min appointments.
An inequality is: 45x + 60y \le 2400
Divide by 15.
3x + 4y \le 160
```

b) Graph the related equation, then describe the graph of the inequality.

Determine the coordinates of 2 points that satisfy the related function. When x = 0, y = 40 When x = 20, y = 25 Join the points with a solid line. The solution is the points, with whole-number coordinates, on and below the line.



c) How many 45-min appointments are possible if no 60-min appointments are scheduled? Where is the point that represents this situation located on the graph?

For no 60-min appointments, y=0, so the point is on the x-axis; it is the point with whole-number coordinates that is closest to the x-intercept of the graph of the related equation. When y=0, $x=\frac{2400}{45}$, or $53.\overline{3}$ Fifty-three 45-min appointments are possible.

16. Graph this inequality. Identify the strategy you used and explain why you chose that strategy.

$$\frac{x}{3} + \frac{y}{2} \ge 1$$

Graph the related function.

Determine the intercepts.

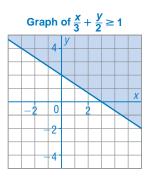
When y = 0, x = 3When x = 0, y = 2Draw a solid line.

Use (0, 0) as a test point.

L.S. = 0; R.S. = 1

Since 0 < 1, the origin is not in the shaded region.

Shade the region above the line.



17. How is a linear inequality in two variables similar to a linear inequality in one variable? How are the inequalities different?

The solutions of both inequalities are usually sets of values. A linear inequality in one variable is a set of numbers that can be represented on a number line. A linear inequality in two variables is a set of ordered pairs that can be represented on a coordinate plane.