PRACTICE TEST, pages 415-418

1. Multiple Choice Which inequality is not represented by this graph?
A. $y>x^{2}-x-6$
B. $y>\left(x-\frac{1}{2}\right)^{2}-\frac{25}{4}$
C. $y>(x+2)(x-3)$
D. $y>(x+3)(x-2)$

2. Multiple Choice Which inequality below is represented by this number line?

A. $2 x^{2}+7 x-4 \geq 0$
B. $2 x^{2}+7 x-4 \leq 0$
C. $-2 x^{2}-7 x+4 \geq 0$
D. $2 x^{2}-7 x+4 \leq 0$
3. Graph each inequality. Give 2 possible solutions in each case.
a) $2 x^{2}-5 x<-2$

Solve: $2 x^{2}-5 x+2=0$

$$
(2 x-1)(x-2)=0
$$

$x=0.5$ or $x=2$
When $x<0.5$, such as $x=0$, L.S. $=0$; R.S. $=-2$;
so $x=0$ does not satisfy the inequality.
When $0.5<x<2$, such as $x=1$, L.S. $=-3$; R.S. $=-2$;
so $x=1$ does satisfy the inequality.
The solution is: $0.5<x<2, x \in \mathbb{R}$
Two possible solutions are: $x=1$ and $x=1.5$

b) $-2 \geq-0.5(x-6)^{2}$

$$
\begin{aligned}
\text { Solve: }-2 & =-0.5(x-6)^{2} \\
(x-6)^{2} & =4 \\
x-6 & = \pm 2 \\
x=4 \text { or } x & =8
\end{aligned}
$$

When $x \leq 4$, such as $x=0$, L.S. $=-2$; R.S. $=-18$;
so $x=0$ does satisfy the inequality.
When $x \geq 8$, such as $x=10$, L.S. $=-2$; R.S. $=-8$;
so $x=10$ does satisfy the inequality.
The solution is: $x \leq 4$ or $x \geq 8, x \in \mathbb{R}$
Two possible solutions are: $x=1$ and $x=20$

c) $y \leq 0.5 x-2$
d) $y>-(x+3)^{2}+4$

Graph the related functions.
The line has slope 0.5 and y-intercept -2 .
Draw a solid line. Shade the region below the line.

The parabola is congruent to $y=-x^{2}$ and has vertex $(-3,4)$. Draw a broken curve. Shade the region above the curve.

4. At a school cafeteria, an apple costs $75 \$$ and a banana costs $50 \$$. Ava has up to $\$ 5$ to spend on fruit for herself and her friends.
a) Write an inequality to represent this situation. What are the restrictions on the variables?

Let a represent the number of apples and b represent the number of bananas.
An inequality is: $75 a+50 b \leq 500$, or
$3 a+2 b \leq 20$
Both a and b are whole numbers.
b) Determine 2 possible ways that Ava can spend up to $\$ 5$.

Determine the coordinates of 2 points
that satisfy the related function.
When $a=0, b=10$
When $a=6, b=1$
Join the points with a solid line.
The solution is the points, with whole-number
coordinates, on and below the line.
Two ways are: 4 apples, 2 bananas; 2 apples, 6 bananas

5. Solve each system of equations. Use algebra for one system and graphing technology for the other. How did you decide which strategy to use?
a) $y=2 x^{2}+x-1$
$x+y=12$
Rearrange equation (2).
$y=12-x$
Substitute $y=12-x$ in equation (1).

$$
12-x=2 x^{2}+x-1
$$

$2 x^{2}+2 x-13=0$
This equation does not factor, so I use graphing technology. I use algebra when the equation does factor.
Input the equations. To the nearest tenth, the graphs intersect at these points: ($-3.1,15.1$) and (2.1, 9.9)
b) $y=(x-2)^{2}$

$$
y=-x^{2}+4 x-4
$$

From equation (1), substitute $y=(x-2)^{2}$ in equation (2).

$$
\begin{aligned}
(x-2)^{2} & =-x^{2}+4 x-4 \\
x^{2}-4 x+4 & =-x^{2}+4 x-4 \\
2 x^{2}-8 x+8 & =0 \\
x^{2}-4 x+4 & =0 \\
(x-2)^{2} & =0
\end{aligned}
$$

So, $x=2$
Substitute $x=2$ in equation (1).
$y=(2-2)^{2}$
$y=0$
The solution is: $(2,0)$
6. The cross section of a pedestrian tunnel under a road is parabolic and is modelled by the equation $y=-0.3 x^{2}+1.8 x$, where y metres is the height of the tunnel at a distance of x metres measured horizontally from one edge of the path under the tunnel. In 2010, the tallest living person was about 2.56 m tall. Could he walk through the tunnel without having to bend over? How could you use an inequality to solve this problem?

Determine the values of x for which $y \geq 2.56$.
Solve: $-0.3 x^{2}+1.8 x \geq 2.56$, or $-0.3 x^{2}+1.8 x-2.56 \geq 0$
Use graphing technology. Input: $y=-0.3 x^{2}+1.8 x-2.56$
Determine if there are any values of x for which $y \geq 0$; these values are approximately $2.3 \leq x \leq 3.7$.
So, the tallest living person could walk through the tunnel.

