Lesson 6.4 Exercises, pages 478-489

A

3. a) For each triangle, write the Sine Law equation you would use to determine the length of AC.

Use:
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\angle B = 30^{\circ}, \ \angle C = 80^{\circ}, \ c = 5$$

 $\frac{b}{\sin 30^{\circ}} = \frac{5}{\sin 80^{\circ}}$

Use:
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$

Substitute:

$$\angle B = 40^{\circ}, \angle C = 110^{\circ}, c = 10$$

$$\frac{b}{\sin 40^\circ} = \frac{10}{\sin 110^\circ}$$

b) For each triangle in part a, determine the length of AC to the nearest tenth of a centimetre.

i)
$$b = \frac{5 \sin 30^{\circ}}{\sin 80^{\circ}}$$
 ii) $b = \frac{10 \sin 40^{\circ}}{\sin 110^{\circ}}$ $b = 2.5385...$ $b = 6.8404...$ AC is approximately 2.5 cm. 6.8 cm.

4. a) For each triangle, write the Sine Law equation you would use to determine the measure of $\angle E$.

Substitute:
$$\angle D = 70^{\circ}, e = 8, d = 10$$
 $\angle F = 115^{\circ}, e = \frac{\sin E}{8} = \frac{\sin 70^{\circ}}{10}$ $\frac{\sin E}{7} = \frac{\sin 115^{\circ}}{10}$

Use:
$$\frac{\sin E}{e} = \frac{\sin D}{d}$$
 Use: $\frac{\sin E}{e} = \frac{\sin F}{f}$
Substitute: Substitute: $\angle D = 70^{\circ}, e = 8, d = 10$ $\angle F = 115^{\circ}, e = 7, f = 10$ $\frac{\sin E}{d} = \frac{\sin 70^{\circ}}{d}$ $\frac{\sin E}{d} = \frac{\sin 115^{\circ}}{d}$

b) For each triangle in part a, determine the measure of $\angle E$ to the nearest degree.

i)
$$\sin E = \frac{8 \sin 70^{\circ}}{10}$$
 ii) $\sin E = \frac{7 \sin 115^{\circ}}{10}$ Since $\angle E$ is acute: $\angle E = \sin^{-1} \left(\frac{8 \sin 70^{\circ}}{10} \right)$ $\angle E = 48.7425...^{\circ}$ $\angle E = 39.3766...^{\circ}$ $\angle E = 39^{\circ}$

В

5. For each triangle, determine the measure of $\angle J$ to the nearest degree.

Use:
$$\frac{\sin J}{j} = \frac{\sin H}{h}$$

Substitute:

$$\angle H = 50^{\circ}, j = 9, h = 7$$

$$\frac{\sin J}{9} = \frac{\sin 50^{\circ}}{7}$$

$$\sin J = \frac{9 \sin 50^{\circ}}{7}$$

$$\sin^{-1}\!\!\left(\!\frac{9\,\sin\,50^\circ}{7}\!\right) \doteq 80^\circ$$

Since $\angle J$ is obtuse:

$$\angle J \doteq 180^{\circ} - 80^{\circ}$$
, or 100°

Use:
$$\frac{\sin J}{i} = \frac{\sin H}{h}$$

Substitute:

$$\angle H = 50^{\circ}, j = 15, h = 12$$

$$\frac{\sin J}{15} = \frac{\sin 50^{\circ}}{12}$$

$$\sin J = \frac{15 \sin 50^{\circ}}{12}$$

$$sin^{-1} \left(\frac{15 \sin 50^{\circ}}{12} \right) \doteq 73^{\circ}$$

Since ∠J is obtuse:

$$\angle J \doteq 180^{\circ} - 73^{\circ}$$
, or 107°

6. Given the following information about each possible ΔABC , determine how many triangles can be constructed.

a)
$$c = 10 \text{ cm}, a = 12 \text{ cm}, \angle A = 20^{\circ}$$

The ratio of the side opposite the angle to the side adjacent to

the angle is: $\frac{a}{c} = \frac{12}{10}$, which is 1.2

Since $\frac{a}{c} > 1$, only 1 triangle can be constructed

b)
$$c = 18 \text{ cm}, a = 12 \text{ cm}, \angle A = 20^{\circ}$$

The ratio of the side opposite the angle to the side adjacent to

the angle is: $\frac{a}{c} = \frac{12}{18}$, which is $0.\overline{6}$

 $\sin 20^{\circ} = 0.3420...$

Since $\sin 20^{\circ} < 0.\overline{6} < 1$, two triangles can be constructed

c)
$$c = 18 \text{ cm}, a = 12 \text{ cm}, \angle A = 50^{\circ}$$

The ratio of the side opposite the angle to the side adjacent to

the angle is: $\frac{a}{c} = \frac{12}{18}$, which is $0.\overline{6}$

 $\sin 50^{\circ} = 0.7660...$

Since $\frac{a}{c} < \sin 50^{\circ}$, no triangle can be constructed

7. a) For each triangle, determine the length of MN to the nearest tenth of a centimetre.

Determine
$$\angle N$$
.
Use: $\frac{\sin N}{n} = \frac{\sin M}{m}$
Substitute: $\angle M = 100^{\circ}$, $n = 9, m = 13$
 $\frac{\sin N}{9} = \frac{\sin 100^{\circ}}{13}$
 $\sin N = \frac{9 \sin 100^{\circ}}{13}$
Since $\angle N$ is acute:
 $\angle N = \sin^{-1} \left(\frac{9 \sin 100^{\circ}}{13} \right)$
 $\angle N = 42.9836...^{\circ}$
So, $\angle K = 180^{\circ} - (100^{\circ} + 42.9836...^{\circ})$
 $= 37.0163...^{\circ}$
Use: $\frac{k}{\sin K} = \frac{m}{\sin M}$
Substitute: $\angle K = 37.0163...^{\circ}$
 $\angle M = 100^{\circ}, m = 13$
 $\frac{k}{\sin 37.0163...^{\circ}} = \frac{13}{\sin 100^{\circ}}$
 $k = \frac{13 \sin 37.0163...^{\circ}}{\sin 100^{\circ}}$
 $k = 7.9472...$
MN is approximately 7.9 cm.

- Determine $\angle N$. Use: $\frac{\sin N}{n} = \frac{\sin M}{m}$ Substitute: $\angle M = 40^{\circ}$, n = 18, m = 15 $\frac{\sin N}{\sin 40^{\circ}}$ $\sin N = \frac{18 \sin 40^{\circ}}{45}$ Since ∠N is acute: $\angle N = \sin^{-1} \left(\frac{18 \sin 40^{\circ}}{15} \right)$ ∠N = 50.4748...° So, ∠K $= 180^{\circ} - (40^{\circ} + 50.4748...^{\circ})$ = 89.5251...° Use: $\frac{k}{\sin K} = \frac{m}{\sin M}$ Substitute: $\angle K = 82.5251...^{\circ}$ $\angle M = 40^{\circ}$, m = 15 $\frac{k}{\sin 89.5251...^{\circ}} = \frac{15}{\sin 40^{\circ}}$ $k = \frac{15 \sin 89.5251}{100} \cdot 100$ sin 40° k = 23.3350...MN is approximately
- **b**) Suppose you had been given the measures for the triangles in part a and not the diagrams. In which triangle would there have been an ambiguous case? Justify your choice.

23.3 cm.

- i) Angle M is obtuse, so there is only 1 triangle
- ii) The ratio of the side opposite the angle to the side adjacent to the angle is: $\frac{NK}{KM} = \frac{15}{18}, \text{ which is } 0.8\overline{3}$ $\sin 40^\circ = 0.6427...$ since $\sin 40^\circ < 0.8\overline{3} < 1$, then there is an ambiguous case

8. Here is a part of a proof of the Sine Law for Δ UVW with obtuse \angle W. Explain each step.

In ΔVUT ,

$$\sin U = \frac{h}{w}$$
 Using the sine ratio in a right triangle $h = w \sin U$ Solving for h

In Δ VWT,

$$\sin \beta = \frac{h}{u}$$
 Using the sine ratio in a right triangle

$$eta=180^{\circ}-lpha$$
 Supplementary angles on a line $\sin eta=\sin (180^{\circ}-lpha)$ The sine of an angle is equal to the sine of its supplement.

So,
$$\sin W = \frac{h}{u}$$
 $\sin UWV = \sin VWT$
 $h = u \sin W$ Solving for h

$$u \sin W = w \sin U$$
 Equating expressions for h
$$\frac{u}{\sin U} = \frac{w}{\sin W}$$
 Dividing each side by $\sin W \sin U$

9. Solve each triangle. Give the angle measures to the nearest degree and side lengths to the nearest tenth of a centimetre.

Determine
$$\angle T$$
.
Use: $\frac{\sin T}{\sin T} = \frac{\sin S}{\sin T}$

Use:
$$\frac{\sin T}{t} = \frac{\sin S}{s}$$

Substitute:
$$\angle S = 35^{\circ}$$
, $t = 24$, $s = 19$

$$\frac{\sin T}{\sin 3} = \frac{\sin 35^{\circ}}{\sin 35^{\circ}}$$

$$\sin T = \frac{24 \sin 35^{\circ}}{19}$$

Since $\angle T$ is acute:

$$\angle T = \sin^{-1} \left(\frac{24 \sin 35^{\circ}}{19} \right)$$

$$\angle T = 46.4287...^{\circ}$$

So,
$$\angle R = 180^{\circ} - (35^{\circ} + 46.4287...^{\circ})$$

Use:
$$\frac{r}{\sin R} = \frac{s}{\sin S}$$

Substitute: $\angle R = 98.5712...^{\circ}$

$$\angle$$
S = 35°, s = 19

$$\frac{r}{\sin 98.5712...^{\circ}} = \frac{19}{\sin 35^{\circ}}$$
$$r = \frac{19 \sin 98.5712...^{\circ}}{\sin 35^{\circ}}$$

$$r = 32.7555...$$

$$\angle$$
T \doteq 46°, \angle R \doteq 99°, ST \doteq 32.8 cm

b) In Δ KMN, \angle M = 70°, KN = 14.1 cm, and MK = 14.5 cm

Check how many triangles can be drawn.

The ratio of the side opposite $\angle M$ to the side adjacent to $\angle M$ is:

$$\frac{\text{KN}}{\text{KM}} = \frac{14.1}{14.5}$$
, which is 0.9724. . .

$$\sin 70^{\circ} = 0.9396...$$

Since
$$\sin 70^{\circ} < 0.9724... < 1$$
,

two triangles can be constructed:

 Δ MKN₁ is acute; Δ MKN₂ is obtuse.

In ΔMKN_1

Determine
$$\angle N_1$$
.

Use:
$$\frac{\sin N_1}{n} = \frac{\sin M}{m}$$

Substitute:
$$\angle M = 70^{\circ}$$
,

$$n = 14.5, m = 14.1$$

$$\frac{\sin N_1}{14.5} = \frac{\sin 70^{\circ}}{14.1}$$

$$\sin N_1 = \frac{14.5 \sin 70^{\circ}}{14.1}$$

$$\angle N_1 = \sin^{-1} \left(\frac{14.5 \sin 70^{\circ}}{14.1} \right)$$

$$\angle N_1 = 75.0943...^{\circ}$$

$$= 180^{\circ} - (70^{\circ} + 75.0943...^{\circ})$$

Use:
$$\frac{k}{\sin K} = \frac{m}{\sin M}$$

Substitute: $\angle K = 34.9056...^{\circ}$

$$\angle M = 70^{\circ}, m = 14.1$$

$$\frac{k}{\sin 34.9056...^{\circ}} = \frac{14.1}{\sin 70^{\circ}}$$

$$k = \frac{14.1 \sin 34.9056...^{\circ}}{\sin 70^{\circ}}$$

$$k = 8.5862...$$

$$\angle N_1 \doteq 75^{\circ}, \angle K \doteq 35^{\circ},$$

$$MN_1 \doteq 8.6 \text{ cm}$$

This diagram is not drawn to scale.

In Δ MKN₂

$$\angle N_2 = 180^{\circ} - 75.0943...^{\circ}$$

= 104.9056...^{\circ}

$$= 180^{\circ} - (70^{\circ} + 104.9056...^{\circ})$$

Use:
$$\frac{k}{\sin K} = \frac{m}{\sin M}$$

Substitute: $\angle K = 5.0943...^{\circ}$

$$\angle M = 70^{\circ}, m = 14.1$$

$$\frac{k}{\sin 5.0943...^{\circ}} = \frac{14.1}{\sin 70^{\circ}}$$

$$x = \frac{14.1 \sin 5.0943...^{\circ}}{\sin 70^{\circ}}$$

$$k = 1.3323...$$

$$\angle N_2 \doteq 105^{\circ}, \angle K \doteq 5^{\circ},$$

$$MN_2 \doteq 1.3 \text{ cm}$$

10. For each triangle below, can you use the Sine Law to determine the indicated measure?

If your answer is yes, determine the measure to the nearest tenth of a unit. If your answer is no, explain why.

b) E 10 cm 5 cm

No, because no angles are given.

No, because only one angle is given and it is a contained angle.

d)

Yes; in Δ GHJ,

$$\angle H = 180^{\circ} - 110^{\circ}$$

= 70°

Use:
$$\frac{h}{\sin H} = \frac{g}{\sin G}$$

Substitute: $\angle H = 70^{\circ}$,

$$\angle G = 30^{\circ}, g = 10$$

$$\frac{h}{\sin 70^{\circ}} = \frac{10}{\sin 30^{\circ}}$$

$$h = \frac{10 \sin 70^{\circ}}{\sin 30^{\circ}}$$

$$h = 18.7938...$$

 $h \doteq 18.8 \text{ cm}$

Use:
$$\frac{\sin N}{n} = \frac{\sin K}{k}$$

Substitute: $\angle K = 48^{\circ}$,

$$n = 11, k = 10$$

$$\frac{\sin N}{11} = \frac{\sin 48^{\circ}}{10}$$

$$\sin N = \frac{11 \sin 48^{\circ}}{10}$$

Since $\angle N$ is acute:

$$\angle N = \sin^{-1} \left(\frac{11 \sin 48^{\circ}}{10} \right)$$

$$\theta = 180^{\circ} - (48^{\circ} + 54.8312...^{\circ})$$

$$\theta \doteq 77.2^{\circ}$$

- **11.** A surveyor constructed this drawing of a triangular lot.
 - a) Determine the unknown side lengths.

161 m.

b) Determine the total length of fencing needed to enclose the lot. Give the answers to the nearest metre.

The total length of fencing is:
$$359 \text{ m} + 161 \text{ m} + 270 \text{ m} = 790 \text{ m}$$

359 m.

12. a) Solve ΔPQR by drawing a perpendicular from P to QR, then use primary trigonometric ratios in each right triangle formed.Give the angle measures to the nearest degree and the side lengths to the nearest

tenth of a centimetre.

In ΔPRN, In ΔPQN,
$$\cos 74^\circ = \frac{RN}{5} \qquad \qquad \sin Q = \frac{4.8063...}{6.5}$$
 RN = 5 cos 74°
$$\angle Q = 47.6830...^\circ$$
 RN = 1.3781...
$$\angle Q \doteq 48^\circ$$
 sin 74° = $\frac{PN}{5}$ cos Q = $\frac{QN}{6.5}$ PN = 5 sin 74° QN = 6.5 cos 47.6830...° PN = 4.8063... QN = 4.3760... In ΔPQR,
$$\angle P \doteq 180^\circ - (48^\circ + 74^\circ)$$

$$\doteq 58^\circ$$
 RQ = (1.3781... + 4.3760...) cm RQ \(\delta \) 5.8 cm

b) Use the Sine Law to solve Δ PQR.

In
$$\triangle$$
 PQR, use: $\frac{\sin Q}{q} = \frac{\sin R}{r}$

$$\frac{\sin Q}{5} = \frac{\sin 74^{\circ}}{6.5}$$

$$\sin Q = \frac{5 \sin 74^{\circ}}{6.5}$$
Since \angle Q is acute:
$$\angle Q = \sin^{-1}\left(\frac{5 \sin 74^{\circ}}{6.5}\right)$$

$$\angle Q = 47.6830...^{\circ}$$

$$\angle P = 180^{\circ} - (47.6830...^{\circ} + 74^{\circ})$$

$$\angle P = 58.3169...^{\circ}$$
Use: $\frac{p}{\sin P} = \frac{r}{\sin R}$

$$\frac{p}{\sin 58.3169...^{\circ}} = \frac{6.5}{\sin 74^{\circ}}$$

$$p = \frac{6.5 \sin 58.3169...^{\circ}}{\sin 74^{\circ}}$$

$$p = 5.7541...$$

$$\angle Q = 48^{\circ}, \angle P = 58^{\circ}, RQ = 5.8 \text{ cm}$$

c) Which strategy for solving Δ PQR was more efficient? Justify your answer.

The Sine Law needed 3 calculations, while the primary trigonometric ratios needed 6 calculations; so the Sine Law is more efficient.

13. A sailor made this sketch on her navigation chart. How much closer is the ship at S to lighthouse A than to lighthouse B?

$$\angle ASB = 90^{\circ} - (10^{\circ} + 20^{\circ})$$

= 60°

b = 7.2853...

So,
$$\angle$$
SAB = 180° - (60° + 35°)
= 85°

Use:
$$\frac{b}{\sin B} = \frac{s}{\sin S}$$
 Use: $\frac{a}{\sin A} = \frac{11}{\sin 60^{\circ}}$

Substitute:
$$\angle B = 35^{\circ}$$
, Substitute: $\angle A = 85^{\circ}$
 $\angle S = 60^{\circ}$, $s = 11$ $\frac{a}{1000} = \frac{11}{1000}$

$$\angle S = 60^{\circ}, s = 11$$
 $\frac{a}{\sin 85^{\circ}} = \frac{11}{\sin 60^{\circ}}$ $\frac{b}{\sin 35^{\circ}} = \frac{11}{\sin 60^{\circ}}$ $a = \frac{11 \sin 85^{\circ}}{\sin 60^{\circ}}$

35°
$$\sin 60^{\circ}$$
 $\sin 60^{\circ}$ $\sin 60^{\circ}$ $\sin 60^{\circ}$ $\sin 60^{\circ}$ $a = 12.6533...$

The required distance is: 12.6533... - 7.2853... = 5.3679...

The ship is approximately 5 km closer to lighthouse A.

- **14.** Two ships are 1600 m apart. Each ship detects a wreck on the ocean floor. The wreck is vertically below the line through the ships. From the ships, the angles of depression to the wreck are 40° and 28°.
 - a) To the nearest metre, how far is the wreck from each ship? The wreck could be between the ships or on one side of both ships. Sketch a diagram to show both positions.

Case 1
$$- \Delta ABW_1$$

 $\angle W_1 = 180^{\circ} - (28^{\circ} + 40^{\circ})$
 $= 112^{\circ}$
Use: $\frac{a}{\sin A} = \frac{w}{\sin W_1}$
Substitute: $\angle A = 28^{\circ}$,
 $\angle W_1 = 112^{\circ}$, $w = 1600$

$$\frac{a}{\sin 28^{\circ}} = \frac{1600}{\sin 112^{\circ}}$$

$$a = \frac{1600 \sin 28^{\circ}}{\sin 112^{\circ}}$$

$$a = 810.1462...$$
Use: $\frac{b}{\sin B} = \frac{1600}{\sin 112^{\circ}}$

sin B sin 112°
Substitute:
$$\angle B = 40^\circ$$

 $b = \frac{1600 \sin 40^\circ}{\sin 412^\circ}$

$$b = \frac{1300 \text{ sin } 12^{\circ}}{\sin 112^{\circ}}$$

 $b = 1109.2300...$

The wreck is approximately 810 m and 1109 m from the ships.

Case 2
$$-\Delta ABW_2$$

$$\angle W_2 = 180^{\circ} - (28^{\circ} + 140^{\circ})$$

= 12°
Use: $\frac{a}{100} = \frac{w}{1000}$

$$\frac{1}{\sin A} = \frac{1}{\sin W_2}$$

Substitute:
$$\angle A = 28^{\circ}$$
, $\angle W_2 = 12^{\circ}$, $w = 1600$

$$\frac{a}{\sin 28^{\circ}} = \frac{1600}{\sin 12^{\circ}}$$
$$a = \frac{1600 \sin 28^{\circ}}{\sin 12^{\circ}}$$

$$a = 3612.8535...$$
Use: $\frac{b}{\sin B} = \frac{1600}{\sin 12^{\circ}}$

Substitute:
$$\angle B = 140^{\circ}$$

$$b = \frac{1600 \sin 140^{\circ}}{\sin 12^{\circ}}$$

$$b = 4946.6202...$$

The wreck is approximately 3613 m and 4947 m from the ships.

b) To the nearest metre, what is the depth of the wreck?

In ΔABW_1 , draw the perpendicular from W_1 to AB at N. Then, W_1N is the depth of

the wreck.

In right
$$\Delta ANW_1$$
:
 $\sin 28^\circ = \frac{W_1N}{AW_1}$
 $W_1N = 1109.2300...(\sin 28^\circ)$
 $W_1N = 520.7519...$

In $\triangle ABW_2$, draw the perpendicular from W_2 to AB extended to M. Then, W_2M is the depth of the wreck.

In right
$$\Delta AMW_2$$
:
 $\sin 28^\circ = \frac{W_2M}{AW_2}$

$$W_2M = 4946.6202... (sin 28^\circ)$$

 $W_2M = 2322.2975...$

The wreck is approximately 521 m deep or 2322 m deep.

15. Two people use transits to sight the top of a pole that is on the line through the bases of the transits. The distances to the top of the pole are: 19.8 m at an angle of elevation of 38.0°; and 14.4 m at an angle of elevation of 57.8°. To the nearest tenth of a metre, determine the distance between the people.

Sketch a diagram. There are 2 solutions.

The people are approximately 23.3 m or 7.9 m apart.

C

16. Two angles in a triangle measure 60° and 45°. The longest side is 10 cm longer than the shortest side. Determine the perimeter of the triangle to the nearest tenth of a centimetre.

Sketch a diagram.

$$180^{\circ} - (45^{\circ} + 60^{\circ}) = 75^{\circ}$$

the least angle, so let
$$BC = a$$
.

The longest side is opposite the greatest angle, so
$$AB = a + 10$$
.

Use: $\frac{a}{\sin A} = \frac{c}{\sin A}$ sin C

Substitute:
$$\angle A = 45^\circ$$
, $\angle C = 75^\circ$, $c = a + 10$

$$\frac{a}{\sin 45^\circ} = \frac{a + 10}{\sin 75^\circ}$$

$$a \sin 75^{\circ} = a \sin 45^{\circ} + 10 \sin 45^{\circ}$$

$$a(\sin 75^{\circ} - \sin 45^{\circ}) = 10 \sin 45^{\circ}$$

$$a = \frac{10 \sin 45^{\circ}}{\sin 75^{\circ} - \sin 45^{\circ}}$$
$$a = 27.3205...$$

Use:
$$\frac{b}{\sin B} = \frac{a}{\sin A}$$

Substitute: $\angle B = 60^{\circ}$, $\angle A = 45^{\circ}$, $a = 27.3205...$

$$\frac{b}{\sin 60^{\circ}} = \frac{27.3205...}{\sin 45^{\circ}}$$
$$b = \frac{27.3205...\sin 60^{\circ}}{\sin 45^{\circ}}$$

$$b = 33.4606...$$

The perimeter is:

$$(27.3205... + 27.3205... + 10 + 33.4606...)$$
 cm $= 98.1$ cm

17. A hiker plans a trip in two sections. Her destination is 15 km away on a bearing of N70°E from her starting position. The first leg of the trip is on a bearing of N10°E. The second leg of the trip is 14 km. How long is the first leg? Give the answer to the nearest tenth of a kilometre.

The first leg is approximately 12.7 km or 2.3 km.

b = 12.7201...

 $b = \frac{14 \sin 51.8926...^{\circ}}{1}$

sin 60°

Substitute: $\angle B = 51.8926...^{\circ}$,

 $\angle C = 60^{\circ}, c = 14$

 $\frac{b}{\sin 51.8926...^{\circ}} = \frac{14}{\sin 60^{\circ}}$

$$\angle D_2 = 180^{\circ} - 68.1073...^{\circ}$$

$$= 111.8926...^{\circ}$$
So, $\angle B = 180^{\circ} - (60^{\circ} + 111.8926...^{\circ})$

$$= 8.1073...^{\circ}$$
To determine CD_2 ,
$$use: \frac{b}{\sin B} = \frac{14}{\sin 60^{\circ}}$$
Substitute: $\angle B = 8.1073...^{\circ}$,
$$\angle C = 60^{\circ}, c = 14$$

$$\frac{b}{\sin 8.1073...^{\circ}} = \frac{14}{\sin 60^{\circ}}$$

$$b = \frac{14 \sin 8.1073...^{\circ}}{\sin 60^{\circ}}$$

$$b = 2.2798...$$