REVIEW, pages 510-515

6.1

- **1.** Point P(10, 4) is on the terminal arm of an angle θ in standard position.
 - a) Determine the distance of P from the origin.

The distance of P from the origin is r. Use: $r = \sqrt{x^2 + y^2}$ Substitute: x = 10, y = 4 $r = \sqrt{10^2 + 4^2}$ $r = \sqrt{116}$, or $2\sqrt{29}$

b) Write the primary trigonometric ratios of θ .

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r}$$
$$= \frac{4}{2\sqrt{29}}, \text{ or } \frac{2}{\sqrt{29}} \qquad = \frac{10}{2\sqrt{29}}, \text{ or } \frac{5}{\sqrt{29}}$$
$$\tan \theta = \frac{y}{x}$$
$$= \frac{4}{10}, \text{ or } 0.4$$

c) What is the value of θ to the nearest degree?

- **2.** Angle θ is in standard position with its terminal arm in Quadrant 1 and $\sin \theta = \frac{2}{3}$.
 - **a**) Determine $\cos \theta$ and $\tan \theta$.

```
Use: r^2 = x^2 + y^2 Substitute: r = 3, y = 2

3^2 = x^2 + 2^2

x^2 = 5

x = \sqrt{5}

\cos \theta = \frac{x}{r} \tan \theta = \frac{y}{x}

= \frac{\sqrt{5}}{3} = \frac{2}{\sqrt{5}}
```

b) Determine the value of θ to the nearest degree.

Use:
$$\sin \theta = \frac{2}{3}$$

 $\theta = \sin^{-1}\left(\frac{2}{3}\right)$
 $\theta = 41.8103...^{\circ}$
 θ is approximately 42°.

6.2

- **3.** For each angle below:
 - i) Sketch it in standard position.
 - ii) Determine its reference angle.
 - **a**) 112°

b) 286°

- i) Since the angle is between 90° and 180°, the terminal arm is in Quadrant 2.
- i) Since the angle is between 270° and 360°, the terminal arm is in Quadrant 4.

 ii) The angle is in Quadrant 2, so its reference angle is: 180° - 112° = 68°

 ii) The angle is in Quadrant 4, so its reference angle is: 360° - 286° = 74°

4. To the nearest degree, which values of θ satisfy the equation $\sin \theta = -\frac{3}{8}$ for $0^{\circ} \le \theta \le 360^{\circ}$? The reference angle is: $\sin^{-1}\left(\frac{3}{8}\right) \doteq 22^{\circ}$ $\sin \theta$ is negative in Quadrants 3 and 4 so: $\theta \doteq 180^{\circ} + 22^{\circ}$ and $\theta \doteq 360^{\circ} - 22^{\circ}$

≐ 338°

6.3

≐ 202°

5. In $\triangle ABC$, BC = 20 cm, AB = 25 cm, and $\angle A = 45^{\circ}$ Show that is it possible to draw $\triangle ABC$, then determine if these measurements illustrate an ambiguous case.

The ratio of the side opposite $\angle A$ to the side adjacent to $\angle A$ is: $\frac{BC}{AB} = \frac{20}{25}$, which is 0.8 sin 45° = 0.7071... Since $\frac{BC}{AB} > \sin 45^{\circ}$, it is possible to draw a triangle Since sin 45° < 0.8 < 1, then this is an ambiguous case

6.4

6. a) In ΔABC, AB = 18.7 cm, AC = 17.9 cm, and ∠B = 70°; determine the measure of BC to the nearest tenth of a centimetre.

Check for the ambiguous case. The ratio of the side opposite $\angle B$ to the side adjacent to $\angle B$ is: $\frac{AC}{AB} = \frac{17.9}{18.7}$, which is 0.9572... sin 70° = 0.9396... Since sin 70° < 0.9572... < 1, then this is an ambiguous case, and 2 triangles can be constructed: $\triangle ABC_1$ is acute; $\triangle ABC_2$ is obtuse. Sketch a diagram.

In
$$\triangle ABC_1$$

Determine $\angle C_1$.
Use: $\frac{\sin C_1}{c} = \frac{\sin B}{b}$
Substitute: $\angle B = 70^\circ$,
 $c = 18.7, b = 17.9$
 $\frac{\sin C_1}{18.7} = \frac{\sin 70^\circ}{17.9}$
 $\sin C_1 = \frac{18.7 \sin 70^\circ}{17.9}$
 $\angle C_1 = \sin^{-1} \left(\frac{18.7 \sin 70^\circ}{17.9}\right)$
 $\angle C_1 = 79.0188...^\circ$
So, $\angle A = 180^\circ - (70^\circ + 79.0188...^\circ)$
 $= 30.9811...^\circ$

In
$$\triangle ABC_2$$

 $\angle C_2 = 180^\circ - \angle C_1$
 $= 100.9811...^\circ$
So, $\angle A = 180^\circ - (70^\circ + 100.9811...^\circ)$
 $= 9.0188...^\circ$
Use: $\frac{a}{\sin A} = \frac{b}{\sin B}$
Substitute: $\angle A = 9.0188...^\circ$
 $\angle B = 70^\circ, b = 17.9$
 $\frac{a}{\sin 9.0188...^\circ} = \frac{17.9}{\sin 70^\circ}$
 $a = \frac{17.9 \sin 9.0188...^\circ}{\sin 70^\circ}$
 $a = 2.9860...$

Use:
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

Substitute: $\angle A = 30.9811...^{\circ}$
 $\angle B = 70^{\circ}, b = 17.9$
 $\frac{a}{\sin 30.9811...^{\circ}} = \frac{17.9}{\sin 70^{\circ}}$
 $a = \frac{17.9 \sin 30.9811...^{\circ}}{\sin 70^{\circ}}$
 $a = 9.8054...$
So, BC $\doteq 9.8$ cm or 3.0 cm

b) In \triangle PQR, QR = 20 cm, PQ = 17 cm, and \angle P = 50°; determine the measure of \angle R to the nearest degree.

```
Check for the ambiguous case.
The ratio of the side opposite \angle P to the side adjacent to \angle P is:
\frac{QR}{PQ} = \frac{20}{17}, which is greater than 1, so only 1 triangle is possible
Sketch a diagram.
                                                                                  0
\frac{\sin R}{r} = \frac{\sin P}{p}
                                                                   17 cm
                                                                                             20 cm
Substitute: \angle P = 50^{\circ}, r = 17, p = 20
\frac{\sin R}{\sin 50^{\circ}}
                                                                      50°
 17
             20
\sin R = \frac{17 \sin 50^{\circ}}{100}
                                                                                                        R
              20
Since \angle R is acute:
\angle R = \sin^{-1} \left( \frac{17 \sin 50^{\circ}}{20} \right)
 \angle R = 40.6274...^{\circ}
\angle R \doteq 41^{\circ}
```

7. Two tow trucks, on a straight road, are pulling a vehicle from a field. The cable from one truck is let out 47 m and it makes an angle of 60° with the road. The cable from the other truck is let out 50 m. To the nearest metre, how far apart are the trucks?

```
Sketch a diagram.
                                                                                   60
Check for the ambiguous case.
The ratio of the side opposite \angle T
                                                                                47 m
                                                                                                   50 m
to the side adjacent to \angle T is:
\frac{SV}{TV} = \frac{50}{47}, which is >1, so only 1 triangle
is possible
Determine \angle S first.
                                                          Then determine TS.
Use: \frac{\sin S}{s} = \frac{\sin T}{t}
                                                          Use: \frac{v}{\sin V} = \frac{t}{\sin T}
                   t
Substitute: \angle T = 60^{\circ},
                                                          Substitute: ∠V = 65.5050...°
s = 47, t = 50
                                                           \angle T = 60^{\circ}, t = 50
\frac{\sin S}{\sin S} = \frac{\sin 60^{\circ}}{\sin 60^{\circ}}
                                                          \frac{\nu}{\sin 65.5050\ldots^\circ} = \frac{50}{\sin 60^\circ}
 47
            50
\sin S = \frac{47 \sin 60^{\circ}}{100}
                                                                             v = \frac{50 \sin 65.5050...^{\circ}}{100}
                50
                                                                                            sin 60°
\angle S = \sin^{-1} \left( \frac{47 \sin 60^{\circ}}{52} \right)
                                                                             v = 52.5387...
                                                          The trucks are approximately
Since \angle S is acute:
∠S = 54.4949...°
                                                          53 m apart.
So, \angle V = 180^{\circ} - (60^{\circ} + 54.4949...^{\circ})
            = 65.5050...°
```

6.5

8. Determine each indicated measure to the nearest tenth of a unit.

9. In Δ RST, $\angle R = 64^{\circ}$, RS = 8.3 m, and RT = 9.0 m Solve this triangle. Give the side lengths to the nearest tenth of a metre and the angle measures to the nearest degree.

 $\theta \doteq 70.9^{\circ}$

```
Since the given angle is between the two given sides, only 1 triangle is
possible. Sketch a diagram. Determine ST first.
Use: r^2 = s^2 + t^2 - 2st \cos R
                                                                              64°
Substitute: s = 9, t = 8.3, \angle R = 64^{\circ}
r^2 = 9^2 + 8.3^2 - 2(9)(8.3) \cos 64^\circ
                                                                          9.0 n
r = \sqrt{9^2 + 8.3^2 - 2(9)(8.3) \cos 64^\circ}
 r = 9.1868...
Determine \angle S.
Use: \frac{\sin S}{s} = \frac{\sin R}{r}
                               Substitute: \angle R = 64^{\circ}, s = 9, r = 9.1868...
\frac{\sin S}{9} = \frac{\sin 64^{\circ}}{9.1868\ldots}
\sin S = \frac{9\sin 64^\circ}{9.1868\ldots}
Since \angle S is acute:
  \angle S = \sin^{-1} \left( \frac{9 \sin 64^{\circ}}{9.1868...} \right)
  ∠S = 61.7049...°
  \angle T = 180^{\circ} - (64^{\circ} + 61.7049...^{\circ})
        = 54.2950...°
So, TS \doteq 9.2 m, \angleS \doteq 62°, \angleT \doteq 54°
```

- **10.** Two airplanes leave an airport on flight paths that intersect at an angle of 50°. After one hour, one plane has travelled 550 km and the other has travelled 310 km.
 - a) To the nearest kilometre, how far apart are the planes?

b) To the nearest degree, what is the angle between the line joining the planes and the course of the faster plane?

Determine $\angle B$. Use: $\frac{\sin B}{b} = \frac{\sin A}{a}$ Substitute: $\angle A = 50^{\circ}, b = 310, a = 423.5674...$ $\frac{\sin B}{310} = \frac{\sin 50^{\circ}}{423.5674...}$ $\sin B = \frac{310 \sin 50^{\circ}}{423.5674...}$ Since $\angle B$ is acute: $\angle B = \sin^{-1} \left(\frac{310 \sin 50^{\circ}}{423.5674...} \right)$ $\angle B = 34.1008...^{\circ}$

The angle between the line joining the planes and the course of the faster plane is approximately 34°.