PRACTICE TEST, pages 516-520

- **1. Multiple Choice** The terminal arm of an angle θ in standard position is in Quadrant 4. Which statements are true?
 - I. $\tan \theta < 0$ II. $\tan \theta > 0$ III. $\sin \theta < \cos \theta$ IV. $\sin \theta > \cos \theta$
 - (A.) I and III B. I and IV C. II and III D. II and IV
- **2. Multiple Choice** An angle θ is in standard position, with $\sin \theta = \frac{1}{5}$. Which statement could be true?
 - **A.** $\cos \theta = \frac{4}{5}$ **B.** $\cos \theta = \frac{2\sqrt{6}}{5}$ **C.** $\cos \theta = \frac{\sqrt{26}}{5}$ **D.** $\cos \theta = \frac{2}{5}$
- **3.** Point P(-2, 7) is on the terminal arm of an angle θ in standard position.
 - a) Determine $\sin \theta$, $\cos \theta$, and $\tan \theta$.

The distance of P from the origin is r.

Use:
$$r = \sqrt{x^2 + y^2}$$
 Substitute: $x = -2$, $y = 7$
 $r = \sqrt{(-2)^2 + 7^2}$

$$r = \sqrt{53}$$

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r} \qquad \tan \theta = \frac{y}{x}$$

$$= \frac{7}{\sqrt{53}} \qquad = \frac{-2}{\sqrt{53}} \qquad = \frac{7}{-2}, \text{ or } -3.5$$

b) Determine the measure of θ to the nearest degree.

Use:
$$\sin \theta = \frac{7}{\sqrt{53}}$$

The reference angle is:

$$\sin^{-1}\!\left(\frac{7}{\sqrt{53}}\right) \doteq 74^{\circ}$$

 θ is approximately 180° - 74°, or 106°.

- **4.** Without using a calculator, determine the exact value of each expression.
 - a) (sin 45°)(cos 45°)

$$\mathbf{b}) \frac{\tan 45^{\circ}}{\cos 60^{\circ}}$$

Substitute:
$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$

(sin 45°)(cos 45°)

$$= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right)$$
$$= \frac{1}{2}$$

Substitute: $tan 45^{\circ} = 1$,

$$\cos 60^{\circ} = 0.5$$

$$\frac{\tan 45^{\circ}}{\cos 60^{\circ}} = \frac{1}{0.5}$$

c)
$$(\tan 120^{\circ})(\tan 210^{\circ})$$

Substitute: $\tan 120^{\circ} = -\sqrt{3}$, $\cos 120^{\circ} = -0.5$ $\sin 330^{\circ} + \cos 120^{\circ}$ $= -0.5 + (-0.5)$ $= -1$

5. For which angles in standard position are the following statements true? Give the angle measures to the nearest degree for $0^{\circ} \le \theta \le 360^{\circ}$.

$$\mathbf{a}) \sin \theta = -\frac{1}{\sqrt{2}}$$

b)
$$\cos \theta = \frac{3}{4}$$

$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$$

sin θ is negative in

Quadrants 3 and 4, so $\theta = 180^{\circ} + 45^{\circ}$, or 225°

or
$$\theta = 360^{\circ} - 45^{\circ}$$
, or 315°

The reference angle is:

$$\cos^{-1}\left(\frac{3}{4}\right) \doteq 41^{\circ}$$

 $\cos \theta$ is positive

in Quadrants 1 and 4, so

 $\theta \doteq 41^{\circ}$

$$\theta \doteq 360^{\circ} - 41^{\circ}$$
, or 319°

6. Solve each triangle. Give the angle measures to the nearest degree and the side lengths to the nearest tenth of a unit.

a) In
$$\triangle$$
ABC, AB = 20 m, \angle A = 65°, and \angle B = 40°

Sketch a diagram. Since 2 angles and the contained side are given, only one triangle can be drawn.

$$\angle C = 180^{\circ} - (40^{\circ} + 65^{\circ})$$

= 75°

Use:
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

Substitute: $\angle A = 65^{\circ}$

$$\angle C = 75^{\circ}, c = 20$$

$$\frac{a}{\sin 65^{\circ}} = \frac{20}{\sin 75^{\circ}}$$

$$a = \frac{20 \sin 65^{\circ}}{\sin 75^{\circ}}$$

$$a = 18.7655...$$

Use:
$$\frac{b}{\sin B} = \frac{20}{\sin 75^{\circ}}$$

Substitute:
$$\angle B = 40^{\circ}$$

$$b = \frac{20 \sin 40^{\circ}}{\sin 75^{\circ}}$$

$$b = 13.3092...$$

So, BC
$$\doteq$$
 18.8 m and AC \doteq 13.3 m

b) In Δ KMN, KM = 25.0 m, MN = 24.6 m, and \angle K = 75°

Check for the ambiguous case.

The ratio of the side opposite $\angle K$ to the side adjacent to $\angle K$ is:

$$\frac{MN}{KM} = \frac{24.6}{25.0}$$
, which is 0.984

$$\sin 75^{\circ} = 0.9659...$$

Since sin 75° < 0.984 < 1, then there is an ambiguous case, and 2 triangles can be constructed: Δ KMN $_1$ is acute; Δ KMN $_2$ is obtuse. Sketch a diagram.

This diagram is not drawn to scale.

In
$$\triangle KMN_1$$

Determine $\angle N_1$.

Use:
$$\frac{\sin N_1}{n} = \frac{\sin K}{k}$$

Substitute:
$$\angle K = 75^{\circ}$$
,

$$n = 25, k = 24.6$$

$$\frac{\sin N_1}{25} = \frac{\sin 75^{\circ}}{24.6}$$

$$\sin N_1 = \frac{25 \sin 75^{\circ}}{24.6}$$

$$\angle N_1 = \sin^{-1} \left(\frac{25 \sin 75^{\circ}}{24.6} \right)$$

So,
$$\angle M = 180^{\circ} - (75^{\circ} + 79.0014...^{\circ})$$

= 25.9985... $^{\circ}$

Use:
$$\frac{m}{\sin M} = \frac{k}{\sin K}$$

$$\angle K = 75^{\circ}, k = 24.6$$

$$\frac{m}{\sin 25.9985...^{\circ}} = \frac{24.6}{\sin 75^{\circ}}$$

$$m = \frac{24.6 \sin 25.9985...^{\circ}}{\sin 75^{\circ}}$$

$$m = 11.1637...$$

So,
$$\angle N \doteq 79^{\circ}$$
, $\angle M \doteq 26^{\circ}$,

and KN
$$\doteq$$
 11.2 m

$$\angle N_2 = 180^{\circ} - \angle N_1$$

= 100.9985...°

So,
$$\angle M = 180^{\circ} - (75^{\circ} + 100.9985...^{\circ})$$

= 4.0014...

Use:
$$\frac{m}{\sin M} = \frac{k}{\sin K}$$

Substitute:
$$\angle M = 4.0014...^{\circ}$$
,

$$\angle K = 75^{\circ}, k = 24.6$$

$$\frac{m}{\sin 4.0014...^{\circ}} = \frac{24.6}{\sin 75^{\circ}}$$

$$m = \frac{24.6 \sin 4.0014...^{\circ}}{\sin 75^{\circ}}$$

$$m = 1.7771...$$

So,
$$\angle N \doteq 101^{\circ}$$
, $\angle M \doteq 4^{\circ}$,

c) In Δ PQR, PQ = 15.0 cm, PR = 11.0 cm, and QR = 10.5 cm

Sketch a diagram. Since 3 sides are given, only one triangle can be drawn. Use: $r^2 = p^2 + q^2 - 2pq \cos R$ Substitute: r = 15, p = 10.5, q = 11 $15^2 = 10.5^2 + 11^2 - 2(10.5)(11) \cos R$ $231 \cos R = 6.25$ $\cos R = \frac{6.25}{231}$ $\angle R = 88.4496...^{\circ}$ Use: $q^2 = p^2 + r^2 - 2pr \cos Q$ Substitute the values above. $11^2 = 10.5^2 + 15^2 - 2(10.5)(15) \cos Q$ $315 \cos Q = 214.25$ $\cos Q = \frac{214.25}{315}$ $\angle Q = 47.1439...^{\circ}$

9 km

 $\angle P = 180^{\circ} - (88.4496...^{\circ} + 47.1439...^{\circ})$ = 44.4064...° So, $\angle P \doteq 44^{\circ}$, $\angle Q \doteq 47^{\circ}$, $\angle R \doteq 88^{\circ}$

7. A cross-country runner runs due east for 6 km, then changes course to E25°N and runs another 9 km. To the nearest tenth of a kilometre, how far is the runner from her starting point?

Sketch a diagram. In Δ STV,

$$\angle T = 180^{\circ} - 25^{\circ}$$

= 155°

To determine SV, use:

$$t^2 = s^2 + v^2 - 2sv \cos T$$

Substitute:
$$s = 9$$
, $v = 6$, $\angle T = 155^{\circ}$

$$t^2 = 9^2 + 6^2 - 2(9)(6) \cos 155^\circ$$

$$t = \sqrt{9^2 + 6^2 - 2(9)(6) \cos 155^\circ}$$

$$t = 14.6588...$$

The runner is approximately 14.7 km from her starting point.

8. In parallelogram BCDE, BC = 10 cm, CD = 15 cm, and \angle B = 135°; determine the lengths of the diagonals to the nearest tenth of a centimetre.

