Lesson 8.3 Exercises, pages 657-665

A
3. For each function, write the equation of the corresponding reciprocal function.
a) $y=5 x-2$
b) $y=3 x$
$y=\frac{1}{5 x-2}$ $y=\frac{1}{3 x}$
c) $y=-4$
d) $y=\frac{1}{2}$
$y=-\frac{1}{4}$

$$
\begin{aligned}
& y=\frac{1}{\frac{1}{2}} \\
& y=2
\end{aligned}
$$

4. Sketch broken lines to represent the vertical and horizontal asymptotes of each graph.
a)

b)

The graph approaches the x-axis, so the line $y=0$ is a horizontal asymptote. The graph approaches the y-axis, so the line $x=0$ is a vertical The graph approaches the x-axis, so the line $y=0$ is a horizontal asymptote. The graph approaches the line $x=-2$, so $x=-2$ is a vertical asymptote.
5. Identify the equation of the vertical asymptote of the graph of each reciprocal function.
a) $y=\frac{1}{2 x}$
Let denominator equal 0 .

$$
\begin{aligned}
2 x & =0 \\
x & =0
\end{aligned}
$$

b) $y=\frac{1}{-3 x+12}$
Let denominator equal 0 .

$$
\begin{aligned}
-3 x+12 & =0 \\
-3 x & =-12 \\
x & =4
\end{aligned}
$$

So, graph of $y=\frac{1}{2 x}$ has a vertical asymptote at $x=0$.

So, graph of $y=\frac{1}{-3 x+12}$ has a vertical asymptote at $x=4$.
c) $y=\frac{1}{5 x+15}$
d) $y=\frac{1}{6 x-3}$

Let denominator equal 0 .

$$
\begin{aligned}
5 x+15 & =0 \\
5 x & =-15 \\
x & =-3
\end{aligned}
$$

Let denominator equal 0 .

$$
\begin{array}{r}
6 x-3=0 \\
6 x=3 \\
x=\frac{1}{2}
\end{array}
$$

So, graph of $y=\frac{1}{5 x+15}$ has a So, graph of $y=\frac{1}{6 x-3}$ has a vertical asymptote at $x=-3$. vertical asymptote at $x=\frac{1}{2}$.

B

6. Use each graph of $y=f(x)$ to sketch a graph of $y=\frac{1}{f(x)}$.

Identify the asymptotes of the graph of the reciprocal function.
a)

Horizontal asymptote: $y=0$
x-intercept is -4 , so vertical asymptote is $x=-4$.
Points $(-3,1)$ and $(-5,-1)$ are common to both graphs.
Some points on $y=f(x)$ are: $(-2,2),(0,4),(-8,-4)$, and
$(-6,-2)$. So, points on $y=\frac{1}{f(x)}$ are $(-2,0.5),(0,0.25),(-8,-0.25)$,
and ($-6,-0.5$).
b)

Horizontal asymptote: $y=0$
x-intercept is 1 , so vertical asymptote is $x=1$.
Points $(0.5,1)$ and $(1.5,-1)$ are common to both graphs.
Some points on $y=f(x)$ are: $(2,-2),(3,-4),(0,2)$, and $(-1,4)$.
So, points on $y=\frac{1}{f(x)}$ are $(2,-0.5),(3,-0.25),(0,0.5)$, and $(-1,0.25)$.
7. For each pair of functions, use a graph of the linear function to sketch a graph of the reciprocal function.
State the domain and range of each reciprocal function.
a) $y=-x$ and $y=\frac{1}{-x}$

The graph of $y=-x$ has slope -1 and y-intercept 0 .
The graph of $y=\frac{1}{-x}$ has horizontal asymptote $y=0$ and vertical asymptote $x=0$.
Points $(-1,1)$ and $(1,-1)$ are common to both graphs.
Some points on $y=-x$ are $(-2,2),(-4,4),(2,-2)$, and (4, 4).
So, points on $y=\frac{1}{-x}$ are $(-2,0.5),(-4,0.25),(2,-0.5)$, and $(4,-0.25)$.
From the graph, $y=\frac{1}{-x}$ has domain $x \in \mathbb{R}, x \neq 0$ and range:
$y \in \mathbb{R}, y \neq 0$.
b) $y=x+2$ and $y=\frac{1}{x+2}$

The graph of $y=x+2$ has slope 1 and y-intercept 2.
The graph of $y=\frac{1}{x+2}$ has horizontal asymptote $y=0$ and vertical asymptote $x=-2$.
Points $(-1,1)$ and $(-3,-1)$ are common to both graphs.
Some points on $y=x+2$ are (0,2), $(2,4),(-4,-2)$, and ($-6,-4$).
So, points on $y=\frac{1}{x+2}$ are $(0,0.5),(2,0.25),(-4,-0.5)$, and $(-6,-0.25)$.
From the graph, $y=\frac{1}{x+2}$ has domain $x \in \mathbb{R}, x \neq-2$ and range:
$y \in \mathbb{R}, y \neq 0$.
c) $y=2 x+1$ and $y=\frac{1}{2 x+1}$

The graph of $y=2 x+1$ has slope 2 and y-intercept 1 .
The graph of $y=\frac{1}{2 x+1}$ has horizontal asymptote $y=0$ and vertical asymptote $x=-0.5$.
Points $(0,1)$ and $(-1,-1)$ are common to both graphs.
Some points on $y=2 x+1$ are $(0.5,2),(2,5),(-1.5,-2)$, and $(-3,-5)$.
So, points on $y=\frac{1}{2 x+1}$ are $(0.5,0.5),(2,0.2),(-1.5,-0.5)$, and $(-3,-0.2)$. From the graph, $y=\frac{1}{2 x+1}$ has domain $x \in \mathbb{R}, x \neq-0.5$ and range: $y \in \mathbb{R}, y \neq 0$.
d) $y=-x+4$ and $y=\frac{1}{-x+4}$

The graph of $y=-x+4$ has slope -1 and y-intercept 4 .
The graph of $y=\frac{1}{-x+4}$ has horizontal asymptote $y=0$ and vertical asymptote $x=4$.
Points $(3,1)$ and $(5,-1)$ are common to both graphs.
Some points on $y=-x+4$ are $(2,2),(0,4),(6,-2)$, and $(8,-4)$.
So, points on $y=\frac{1}{-x+4}$ are (2, 0.5), $(0,0.25),(6,-0.5)$, and
$(8,-0.25)$. From the graph, $y=\frac{1}{-x+4}$ has domain $x \in \mathbb{R}, x \neq 4$ and range: $y \in \mathbb{R}, y \neq 0$.
8. Use each graph of $y=\frac{1}{f(x)}$ to graph the linear function $y=f(x)$. Describe the strategy you used.
a)

Vertical asymptote is $x=5$, so graph of $y=f(x)$ has x-intercept 5 .
Mark points at $y=1$ and $y=-1$ on graph of $y=\frac{1}{f(x)}$, then draw a line through these points for the graph of $y=f(x)$.
b)

Vertical asymptote is $x=3$, so graph of $y=f(x)$ has x-intercept 3 .
Mark points at $y=1$ and $y=-1$ on graph of $y=\frac{1}{f(x)}$, then draw a line through these points for the graph of $y=f(x)$.
9. Use graphing technology. Graph each pair of functions on the same screen. State the domain and range of each reciprocal function.
a) $y=3 x+5$ and $y=\frac{1}{3 x+5}$

The graph of $y=3 x+5$ has x-intercept $-\frac{5}{3}$, so the graph of $y=\frac{1}{3 x+5}$ has vertical asymptote $x=-\frac{5}{3}$. The reciprocal function has domain $x \in \mathbb{R}, x \neq-\frac{5}{3}$ and range: $y \in \mathbb{R}, y \neq 0$.
b) $y=-5 x+0.5$ and $y=\frac{1}{-5 x+0.5}$

Using the Intersect feature, the graph of $y=-5 x+0.5$ has
x-intercept 0.1 , so the graph of $y=\frac{1}{-5 x+0.5}$ has vertical asymptote $x=0.1$. The reciprocal function has domain $x \in \mathbb{R}, x \neq 0.1$ and range: $y \in \mathbb{R}, y \neq 0$.
10. a) The function $y=f(x)$ is linear. Is it possible for $y=\frac{1}{f(x)}$ to be a horizontal line? If so, how do the domain and range of the reciprocal function compare to the domain and range of $f(x)$?

Yes, if the linear function is a horizontal line of the form
$y=c, c \neq 0$, then the graph of the reciprocal function $y=\frac{1}{c}$
is also a horizontal line. The domain of both functions is $x \in \mathbb{R}$. The range of the linear function is $y=c$ and the range of the reciprocal function is $y=\frac{1}{c}$.
b) The function $y=f(x)$ is linear. Is it possible for $y=\frac{1}{f(x)}$ to be undefined for all real values of x ? Explain your thinking.

Yes, if the linear function is the horizontal line $y=0$, then the graph of the reciprocal function $y=\frac{1}{0}$ is undefined.
11. The reciprocal of a linear function has a vertical asymptote $x=\frac{3}{4}$. What is an equation for the reciprocal function?
The equation of the reciprocal function has the form $y=\frac{1}{m x+b}$.
The vertical asymptote is $x=\frac{3}{4}$, so $m x+b=0$ when $x=\frac{3}{4}$.
$m\left(\frac{3}{4}\right)+b=0$
Choose a value for m.
When $m=4,3+b=0$, or $b=-3$.
So, an equation for the function is: $y=\frac{1}{4 x-3}$
12. Two linear functions with opposite slopes were used to create graphs of the reciprocal functions $y=\frac{1}{f(x)}$ and $y=\frac{1}{g(x)}$.
a) Which linear function has a positive slope?

The graph of $y=\frac{1}{f(x)}$ goes through the points $(1,1)$ and $(-1,-1)$. A line through these points goes up to the right, so $y=f(x)$ has a positive slope.
b) Which linear function has a negative slope?

Explain your reasoning.
The graph of $y=\frac{1}{g(x)}$ goes through the points $(1,-1)$ and $(-1,1)$. A line through these points goes down to the right, so $y=g(x)$ has a negative slope.
13. a) Write a reciprocal function that describes the length, l metres, of a rectangle with area $1 \mathrm{~m}^{2}$, as a function of its width, w metres.

Use the formula for the area, A, of a rectangle with length / and width w :
$A=I w$ Substitute: $A=1$
$1=/ w$
$I=\frac{1}{w}$
b) What are the domain and range of the reciprocal function in part a?

Both length and width are positive. The reciprocal function has vertical asymptote $w=0$ and horizontal asymptote $I=0$. So, the domain is $w \in \mathbb{R}, w>0$ and the range is $I \in \mathbb{R}, I>0$.
c) Graph the reciprocal function in part a. Describe the graph. How does it differ from the graphs of other reciprocal functions you have seen? Explain.

Both $I>0$ and $w>0$, so the graph of $I=\frac{1}{w}$
is in Quadrant 1. The arm of the graph that would be in Quadrant 3 is not included because both length and width must be positive.
14. A linear function has the form $y=a x+b, a \neq 0$. Why does the graph of its reciprocal function always have a vertical and a horizontal asymptote?
A linear function of the form $y=a x+b, a \neq 0$, has an x-intercept of $-\frac{b}{a}$ when $y=0$, so the graph of its reciprocal has a vertical asymptote at $x=-\frac{b}{a}$. The numerator of a reciprocal function is 1 . So, the value of the function cannot be 0 for any value of x. When $|x|$ is very large, $\frac{1}{a x+b}$ is close to 0 . So, the x-axis is a horizontal asymptote.
15. The graphs of two distinct linear functions $y=f(x)$ and $y=g(x)$ are parallel. Do the graphs of their reciprocal functions intersect? How do you know?

The functions are parallel so $y=f(x)$ and $y=g(x)$ have the same slope.
Let the equations of the lines be $y=a x+b$ and $y=a x+c$.
By graphing some examples on my calculator, it seems that the graphs never intersect.
I have to show that there is no value of x for which $\frac{1}{a x+b}=\frac{1}{a x+c}$.
Assume there is a value of $x, x=d$, where $\frac{1}{a(d)+b}=\frac{1}{a(d)+c}$
Then, $a d+c=a d+b$

$$
c=b
$$

But, $b \neq c$ because the linear functions are distinct. So, the graphs of the reciprocal functions do not intersect.
16. a) How can you tell without graphing whether the graphs of $y=\frac{1}{x-2}$ and $y=\frac{1}{-x+4}$ intersect?

I can equate the two reciprocals to determine if there is a value of x for which the y-values are the same. If there is, then the graphs intersect.
b) Determine the coordinates of any points of intersection.

The y-values are equal when:
$\frac{1}{x-2}=\frac{1}{-x+4}$
$x-2=-x+4$
$2 x=6$
$x=3$
Substitute $x=3$ in $y=\frac{1}{x-2}$:

$$
\begin{aligned}
& y=\frac{1}{3-2} \\
& y=1
\end{aligned}
$$

The graphs of the reciprocal functions intersect at $(3,1)$.
c) Use graphing technology. Graph the functions to verify your answer.

The graphs of the reciprocal functions intersect at $(3,1)$.

17. Determine the equation of the linear function $y=f(x)$ you graphed in question 8, part a.

The linear function has x-intercept 5 and y-intercept -5 .
So, the equation has the form $y=m x-5$.
The line passes through $(6,1)$ so substitute $x=6$ and $y=1$.
$1=m(6)-5$
$6=6 m$
$m=1$
So, the equation on the linear function is: $y=x-5$

