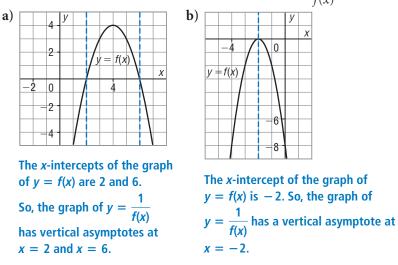
Lesson 8.5 Exercises, pages 680–688

Α

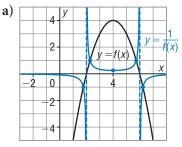
3. For each graph of y = f(x), draw vertical lines to represent the vertical asymptotes, if they exist, of the graph of $y = \frac{1}{f(x)}$.



- **4.** For each graph in question 3, identify the values of *x* for which the graph of $y = \frac{1}{f(x)}$ is above the *x*-axis, and for which it is below the *x*-axis.
 - a) Above the *x*-axis: 2 < *x* < 6
 Below the *x*-axis:
 x < 2 or *x* > 6

b) Below the x-axis: $x \in \mathbb{R}, x \neq -2$ Above the x-axis: never **5.** On each graph from question 3, sketch the graph of $y = \frac{1}{f(x)}$.

b)



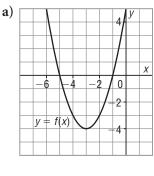
х 4 1 $\overline{f(x)}$ y = f(x)

The x-axis is a horizontal asymptote. Plot points where the lines y = 1 and y = -1intersect the graph. These points are common to both graphs. The graph of y = f(x) has vertex (4, 4), so point $\left(4, \frac{1}{4}\right)$ lies on $y = \frac{1}{f(x)}$.

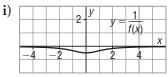
Since the graph has 2 vertical asymptotes, it has Shape 3.

The x-axis is a horizontal asymptote. Plot points where the line y = -1 intersects the graph. These points are common to both graphs. Since the graph has one vertical asymptote, it has Shape 2.

6. Match each graph of y = f(x) to the corresponding graph of $y = \frac{1}{f(x)}$. What features of the graphs did you use to make your decisions?



b)					2 -	у					
	\vdash				_		_				x
	-4	4	-2	2	0		2	2	2	1	
	\vdash			-	7	h	_				
				7	-4 -		\backslash		_		
	\vdash			\mid	-		$\left \right $	<i>y</i> =	= f	(X)	
				-	-6-						



ii)							2	У	
							ľ		
	_		2			_	$\overline{\ }$		X
	-	-6	5	$\left \right $		\mathcal{A}	0		
	<u>у</u> :	f(x)			-	2		

The graph that corresponds to graph a is graph ii. The graph of y = f(x)in part a has 2 x-intercepts, so the graph of its reciprocal function has 2 vertical asymptotes.

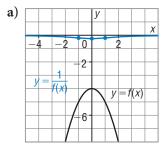
The graph that corresponds to graph b is graph i. The graph of y = f(x)in part b has no x-intercepts, so the graph of its reciprocal function has no vertical asymptotes.

7. How many vertical asymptotes does the graph of each reciprocal function have? Identify the equation of each vertical asymptote.

a)
$$y = \frac{1}{-(x + 3)^2}$$

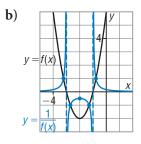
 $-(x + 3)^2 = 0$ when
 $x = -3$. So, the graph of
 $y = \frac{1}{-(x + 3)^2}$ has
1 vertical asymptote,
 $x = -3$.
c) $y = \frac{1}{x^2 + x - 6}$
 $x^2 + x - 6 = (x + 3)(x - 2)$
 $(x + 3)(x - 2) = 0$ when
 $x = -3$ or $x = 2$. So, the
graph of $y = \frac{1}{x^2 + x - 6}$ has
2 vertical asymptotes, $x = -3$
and $x = 2$.
b) $y = \frac{1}{(x - 2)(x + 6)}$
($x - 2$)($x + 6$) = 0 when $x = 2$ or
 $(x - 2)(x + 6) = 0$ when $x = 2$ or
 $x = -6$. So, the graph of
 $y = \frac{1}{(x - 2)(x + 6)}$ has 2 vertical
asymptotes, $x = 2$ and $x = -6$.
d) $y = \frac{1}{-3x^2 - 9}$
 $-3x^2 - 9 = -3(x^2 + 3)$
Since $x^2 + 3$ cannot be 0, the graph
of $y = \frac{1}{-3x^2 - 9}$ has no vertical
asymptotes.

8. On the graph of each quadratic function y = f(x), sketch a graph of the reciprocal function $y = \frac{1}{f(x)}$. Identify the vertical asymptotes, if they exist. Explain your strategies.



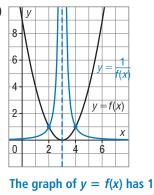
В

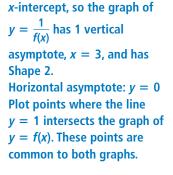
The graph of y = f(x) has no *x*-intercepts, so the graph of $y = \frac{1}{f(x)}$ has no vertical asymptotes and has Shape 1. Horizontal asymptote: y = 0Points (0, -4), (-1, -5), and (1, -5) lie on y = f(x), so points (0, -0.25), (-1, -0.2), and (1, -0.2) lie on $y = \frac{1}{f(x)}$.

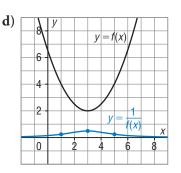


The graph of y = f(x) has 2 *x*-intercepts, so the graph of $y = \frac{1}{f(x)}$ has 2 vertical asymptotes, x = -3 and x = -1, and has Shape 3. Horizontal asymptote: y = 0Plot points where the lines y = 1 and y = -1intersect the graph of y = f(x). These points are common to both graphs. The graph of y = f(x)has vertex (-2, -2), so point (-2, -0.5)lies on $y = \frac{1}{f(x)}$.

©P DO NOT COPY.

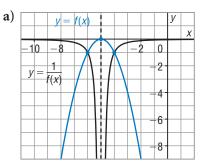




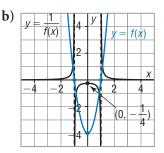


The graph of y = f(x) has no *x*-intercepts, so the graph of $y = \frac{1}{f(x)}$ has no vertical asymptotes and has Shape 1. Horizontal asymptote: y = 0Points (3, 2), (1, 4), and (5, 4) lie on y = f(x), so points (3, 0.5), (1, 0.25), and (5, 0.25) lie on $y = \frac{1}{f(x)}$.

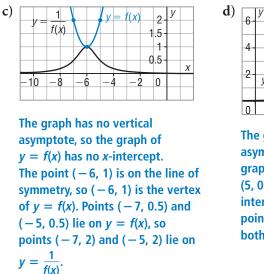
9. On the graph of each reciprocal function $y = \frac{1}{f(x)}$, sketch a graph of the quadratic function y = f(x).

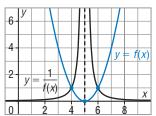


The graph has one vertical asymptote, x = -5, so the graph of y = f(x) has vertex (-5, 0). The line y = -1 intersects the graph at 2 points that are common to both graphs.



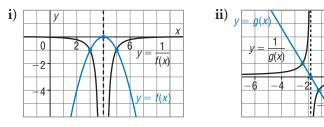
The graph has 2 vertical asymptotes, x = -1 and x = 1, so the graph of y = f(x) has *x*-intercepts -1 and 1. The point $\left(0, -\frac{1}{4}\right)$ is on the line of symmetry, so (0, -4) is the vertex of y = f(x).





The graph has one vertical asymptote, x = 5, so the graph of y = f(x) has vertex (5, 0). The line y = 1 intersects the graph at 2 points that are common to both graphs.

10. The graphs of the reciprocal functions $y = \frac{1}{f(x)}$ and $y = \frac{1}{g(x)}$ are shown below.



- a) Identify whether each function y = f(x) and y = g(x) is linear or quadratic. How did you decide?
 - i) y = f(x) is quadratic. I recognize
 ii) y
 the shape of the graph as that of
 the reciprocal of a quadratic
 function with 1 x-intercept.
- ii) y = g(x) is linear. I recognize the shape of the graph as that of the reciprocal of a linear function.

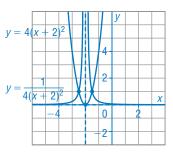
2

- **b**) On the graph of each reciprocal function, sketch a graph of the related linear or quadratic function. What strategy did you use each time?
 - i) The graph has one vertical asymptote, x = 4, so the graph of y = f(x) has vertex (4, 0). The line y = -1 intersects the graph at 2 points that are common to both graphs.

ii) Vertical asymptote is about x = -1.8, so graph of y = g(x) has x-intercept -1.8. Mark points at y = 1and y = -1 on graph of $y = \frac{1}{g(x)}$, then draw a line through these points for the graph of y = g(x). **11.** Graph each pair of functions on the same grid. Explain your strategies.

a)
$$y = 4(x + 2)^2$$
 and $y = \frac{1}{4(x + 2)^2}$

The graph of $y = 4(x + 2)^2$ opens up, has vertex (-2, 0), and x-intercept -2. The graph of $y = \frac{1}{4(x + 2)^2}$ has vertical asymptote, x = -2 and horizontal asymptote y = 0. Plot points where the line y = 1 intersects the graph of $y = 4(x + 2)^2$. These points are common to both graphs. The graph of the reciprocal function has Shape 2.



b)
$$y = -2x^2 - 3$$
 and $y = \frac{1}{-2x^2 - 3}$

The graph of $y = -2x^2 - 3$ opens down, with vertex (0, -3), so the graph has no *x*-intercepts. The graph of $y = \frac{1}{-2x^2 - 3}$ has no vertical asymptotes; the horizontal asymptote is y = 0. Points (0, -3), (1, -5), and (-1, -5) lie on $y = -2x^2 - 3$. So, points $\left(0, -\frac{1}{3}\right)$, (1, -0.2), and

$$(-1, -0.2)$$
 lie on $y = \frac{1}{-2x^2 - 3}$. The graph of the reciprocal function has Shape 1.

$$y = \frac{1}{-2x^2 - 3} \frac{2}{-4} \frac{x}{-4} \frac{x}{-2} \frac{x}{-4} \frac{x}{-2} \frac{x}{-4} \frac{x}{-2} \frac{x}{-4} \frac{x}{-2} \frac{x}{-4} \frac{x}{-2} \frac{x}{-4} \frac{x}{-4} \frac{x}{-2} \frac{x}{-4} \frac{x}{-4}$$

0

8

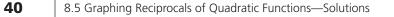
 $2x^2 - 4x - 6$

x

2 4

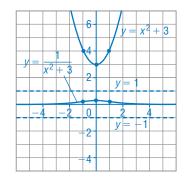
c)
$$y = 2x^2 - 4x - 6$$
 and $y = \frac{1}{2x^2 - 4x - 6}$

The graph of $y = 2x^2 - 4x - 6$, or y = 2(x - 3)(x + 1) opens up, 4xhas x-intercepts 3 and -1, and vertex (1, -8). The graph of $y = \frac{1}{2x^2 - 4x - 6}$ has vertical asymptotes x = 3 and x = -1, and a horizontal asymptote y = 0. Plot points where the lines y = 1and y = -1 intersect the graph of y = 2(x - 3)(x + 1). These points are common to both graphs. Point (1, -8) lies on $y = 2x^2 - 4x - 6$, so point $(1, -\frac{1}{8})$ lies on $y = \frac{1}{2x^2 - 4x - 6}$. The graph of the reciprocal function has Shape 3.



12. A quadratic function and its reciprocal are graphed on a grid. The horizontal lines y = 1 and y = -1 do not intersect either graph. Sketch a possible graph of the quadratic function and its reciprocal. Explain your strategy.

If the lines y = 1 and y = -1 do not intersect the graph of a quadratic function, the vertex of the graph either lies above the line y = 1 and opens up, or it lies below the line y = -1 and opens down. In either case, the graph of the quadratic function has no *x*-intercepts and the graph of the corresponding reciprocal function has no vertical asymptotes. Here is the graph of $y = x^2 + 3$ and $y = \frac{1}{x^2 + 3}$.



13. A reciprocal function has the form $y = \frac{1}{ax^2 + b}$, $a \neq 0$, $b \neq 0$. How can you determine the number of asymptotes of the graph of $y = \frac{1}{ax^2 + b}$ when:

a) both *a* and *b* are positive?

Look at the quadratic function $y = ax^2 + b$. When both *a* and *b* are positive, the graph opens up and its vertex is above the *x*-axis. So, the graph of $y = ax^2 + b$ has no *x*-intercepts and the graph of $y = \frac{1}{ax^2 + b}$ has no vertical asymptotes.

b) both *a* and *b* are negative?

Look at the quadratic function $y = ax^2 + b$. When both *a* and *b* are negative, the graph opens down and its vertex is below the *x*-axis. So, the graph of $y = ax^2 + b$ has no *x*-intercepts and the graph of $y = \frac{1}{ax^2 + b}$ has no vertical asymptotes.

c) *a* and *b* have opposite signs?

Look at the quadratic function $y = ax^2 + b$. When a and b have opposite signs, the graph either opens up with its vertex below the x-axis, or it opens down with its vertex above the x-axis. So, the graph of $y = ax^2 + b$ has 2 x-intercepts and the graph of $y = \frac{1}{ax^2 + b}$ has 2 vertical asymptotes.

С

14. The reciprocal function $y = \frac{1}{px^2 + (2p + 1)x + p}$ has one vertical asymptote. Show that $p = -\frac{1}{4}$.

If the reciprocal function has one vertical asymptote, then the related quadratic function has one x-intercept; that is, the quadratic equation $px^2 + (2p + 1)x + p = 0$ has equal roots. The equation has equal roots when $b^2 - 4ac = 0$. Substitute: b = 2p + 1, a = p, c = p $(2p + 1)^2 - 4(p)(p) = 0$ $4p^2 + 4p + 1 - 4p^2 = 0$ 4p + 1 = 0 $p = -\frac{1}{4}$

15. Determine the values of *k* for which the reciprocal function

$$y = \frac{1}{x^2 + kx + 4}$$
 has:

a) no vertical asymptotes

The reciprocal function has no vertical asymptotes, so the related quadratic function has no x-intercepts; that is, $x^2 + kx + 4 = 0$ has no real roots. The equation has no real roots when $b^2 - 4ac < 0$. Substitute: a = 1, b = k, c = 4 $k^2 - 4(1)(4) < 0$ $k^2 - 16 < 0$ $k^2 < 16$ -4 < k < 4

b) one vertical asymptote

The reciprocal function has one vertical asymptote, so the related quadratic function has one x-intercept; that is, $x^2 + kx + 4 = 0$ has equal roots. The equation has equal roots when $b^2 - 4ac = 0$. Substitute: a = 1, b = k, c = 4 $k^2 - 4(1)(4) = 0$ $k^2 - 16 = 0$ $k^2 = 16$ k = 4 or k = -4

c) two vertical asymptotes

The reciprocal function has two vertical asymptotes, so the related quadratic function has two x-intercepts; that is, $x^2 + kx + 4 = 0$ has 2 real roots. The equation has 2 real roots when $b^2 - 4ac > 0$. Substitute: a = 1, b = k, c = 4 $k^2 - 4(1)(4) > 0$ $k^2 - 16 > 0$ $k^2 > 16$ k < -4 or k > 4

- **16.** Determine the equation of each quadratic function y = f(x) you graphed in question 9. Describe your strategies.
 - a) The graph has vertex (-5, 0) and passes through the point (-6, -1). So, the equation has the form: $y = a(x + 5)^2$ Substitute: x = -6, y = -1 $-1 = a(-6 + 5)^2$ -1 = aThe equation of the quadratic function is $y = -(x + 5)^2$. b) The graph has vertex (0, -4) and passes through the point (1, 0). So, the equation has the form: $y = ax^2 - 4$ Substitute: x = 1, y = 0 $0 = a(1)^2 - 4$ 4 = aThe equation of the quadratic function is $y = 4x^2 - 4$. c) The graph has vertex (-6, 1) and passes through the point (-5, 2). So, the equation has the form: $y = a(x + 6)^2 + 1$ Substitute: x = -5, y = 2 $2 = a(-5 + 6)^2 + 1$ 1 = aThe equation of the quadratic function is $y = (x + 6)^2 + 1$. d) The graph has vertex (5, 0) and passes through the point (4, 1). So, the equation has the form: $y = a(x - 5)^2$ Substitute: x = 4, y = 1 $1 = a(4 - 5)^2$ 1 = a
 - The equation of the quadratic function is $y = (x 5)^2$.