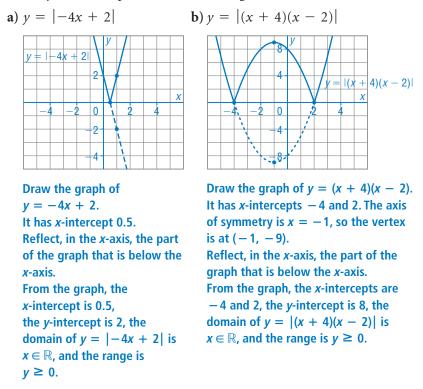
REVIEW, pages 692–697

8.1

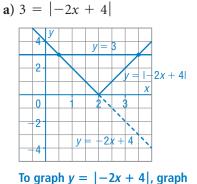
1. Sketch a graph of each absolute function. Identify the intercepts, domain, and range.



2. Write each absolute value function in piecewise notation.

a) $y = -x - 9 $	b) $y = 2x(x + 5) $
y = -x - 9 when	The <i>x</i> -intercepts of the graph of
$-x - 9 \ge 0$	y = 2x(x + 5) are $x = 0$ and $x = -5$.
$-x \ge 9$	The graph opens up, so between the
$x \le -9$	<i>x</i> -intercepts, the graph is below the
y = -(-x - 9),	<i>x</i> -axis. For the graph of $y = 2x(x + 5) $:
or $y = x + 9$ when	For $x \le -5$ or $x \ge 0$, the value of
-x - 9 < 0	$2x(x + 5) \ge 0$
-x < 9	For $-5 < x < 0$, the value of
x > -9	2x(x + 5) < 0; that is, $y = -2x(x + 5)$.
So, using piecewise notation:	So, using piecewise notation:
$y = \begin{cases} -x - 9, & \text{if } x \le -9\\ x + 9, & \text{if } x > -9 \end{cases}$	$y = \begin{cases} 2x(x+5), & \text{if } x \le -5 \text{ or } x \ge 0\\ -2x(x+5), & \text{if } -5 < x < 0 \end{cases}$

3. Solve by graphing.

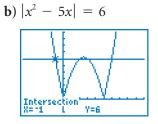


y = -2x + 4, then reflect, in the

x-axis, the part of the graph that

is below the *x*-axis. The line y = 3

intersects y = |-2x + 4| at (0.5, 3) and (3.5, 3). So, the solutions are x = 0.5 and x = 3.5.



Enter $y = |x^2 - 5x|$ and y = 6 in the graphing calculator. The line y = 6 appears to intersect $y = |x^2 - 5x|$ at 4 points: (-1, 6), (2, 6), (3, 6), and (6, 6). So, the equation has 4 solutions: x = -1, x = 2, x = 3, and x = 6

4. Use algebra to solve each equation.

a)
$$2 = |(x - 1)^2 - 2|$$

When $(x - 1)^2 - 2 \ge 0$: When $(x - 1)^2 - 2 < 0$:
 $2 = (x - 1)^2 - 2$
 $4 = (x - 1)^2$
 $x = 3 \text{ or } x = -1$
So, $x = -1$, $x = 1$, and $x = 3$ are the solutions.

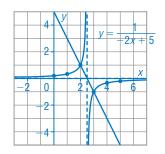
b)
$$2x = \frac{1}{2}|3x - 5|$$

 $4x = |3x - 5|$
 $4x = 3x - 5$
if $3x - 5 \ge 0$
that is, if $x \ge \frac{5}{3}$
When $x \ge \frac{5}{3}$:
 $4x = 3x - 5$
 $x = -5$
 $x = \frac{5}{7}$
 -5 is not greater than or equal to $\frac{5}{3}$, so -5 is not a solution.
 $\frac{5}{7} < \frac{5}{3}$ so $\frac{5}{7}$ is a root.
The solution is $x = \frac{5}{7}$.

8.3

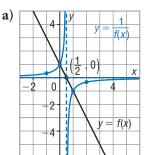
5. Identify the equation of the vertical asymptote of the graph of $y = \frac{1}{-2x + 5}$, then graph the function.

The graph of y = -2x + 5 has slope -2, x-intercept $\frac{5}{2}$, and y-intercept 5. The graph of $y = \frac{1}{-2x + 5}$ has a horizontal asymptote y = 0 and a vertical asymptote $x = \frac{5}{2}$. Points (3, -1) and (2, 1) are common to both graphs. Some points on y = -2x + 5 are (1, 3), (0, 5), (4, -3), and (5, -5). So, points on $y = \frac{1}{-2x + 5}$ are $\left(1, \frac{1}{3}\right)$, (0, 0.2), $\left(4, -\frac{1}{3}\right)$, and (5, -0.2).

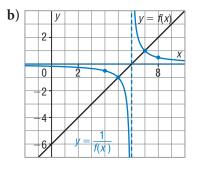


6. Use the graph of y = f(x) to sketch a graph of $y = \frac{1}{f(x)}$.

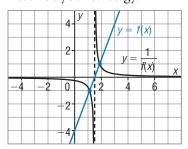
Identify the equations of the asymptotes of the graph of each reciprocal function.



Horizontal asymptote: y = 0*x*-intercept is $\frac{1}{2}$, so vertical asymptote is $x = \frac{1}{2}$. Points (0, 1) and (1, -1) are common to both graphs. Some points on y = f(x) are: (-1, 3) and (2, -3). So, points on $y = \frac{1}{f(x)}$ are $\left(-1, \frac{1}{3}\right)$ and $\left(2, -\frac{1}{3}\right)$.



Horizontal asymptote: y = 0x-intercept is 6, so vertical asymptote is x = 6. Points (7, 1) and (5, -1) are common to both graphs. Some points on y = f(x) are: (8, 2) and (4, -2). So, points on $y = \frac{1}{f(x)}$ are (8, 0.5) and (4, -0.5). 7. Use the graph of $y = \frac{1}{f(x)}$ to graph the linear function y = f(x). Describe your strategy.



Vertical asymptote is x = 1.5, so graph of y = f(x) has *x*-intercept 1.5. Mark points at y = 1 and y = -1 on graph of $y = \frac{1}{f(x)}$, then draw a line through these points for the graph of y = f(x).

8.4

8. Use a graphing calculator or graphing software. For which values of *q* does the graph of

$$y = \frac{1}{-(x-3)^2 + q}$$
 have:

a) no vertical asymptotes?

Look at the quadratic function $y = -(x - 3)^2 + q$. The graph opens down. For the graph of its reciprocal function to have no vertical asymptotes, the quadratic function must have no *x*-intercepts. So, the vertex of the quadratic function must be below the *x*-axis; that is, q < 0.

b) one vertical asymptote?

Look at the quadratic function $y = -(x - 3)^2 + q$. The graph opens down. For the graph of its reciprocal function to have one vertical asymptote, the quadratic function must have one *x*-intercept. So, the vertex of the quadratic function must be on the *x*-axis; that is, q = 0.

c) two vertical asymptotes?

Look at the quadratic function $y = -(x - 3)^2 + q$. The graph opens down. For the graph of its reciprocal function to have two vertical asymptotes, the quadratic function must have two *x*-intercepts. So, the vertex of the quadratic function must be above the *x*-axis; that is, q > 0. **9.** Determine the equations of the vertical asymptotes of the graph of each reciprocal function.

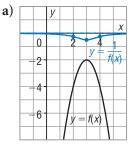
Graph to check the equations.

a)
$$y = \frac{1}{(x-2)^2 - 9}$$

(x - 2)² - 9 = 0 when
(x - 2)² = 9; that is, when
x = 5 or x = -1. So, the
graph of $y = \frac{1}{(x-2)^2 - 9}$ has
2 vertical asymptotes, x = 5
and x = -1. I used my graphing
calculator to show that my
equations are correct.
b) $y = \frac{1}{-(x-2)^2 - 9}$
 $-(x - 2)^2 - 9 = 0$ when
 $(x - 2)^2 = -9$. Since the square
of a number is never negative,
the graph of $y = -(x - 2)^2 - 9$
has no x-intercepts, and the
graph of $y = \frac{1}{-(x - 2)^2 - 9}$ has
no vertical asymptotes. I used my
graphing calculator to show that
my equations are correct.

8.5

10. On the graph of each quadratic function y = f(x), sketch a graph of the reciprocal function $y = \frac{1}{f(x)}$. Identify the vertical asymptotes, if they exist.



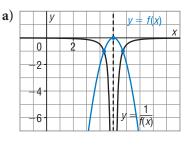
The graph of y = f(x) has no *x*-intercepts, so the graph of $y = \frac{1}{f(x)}$ has no vertical asymptotes and has Shape 1. Horizontal asymptote: y = 0 Points (2, -4), (3, -2), and (4, -4) lie on y = f(x), so points (2, -0.25), (3, -0.5), and (4, -0.25) lie on

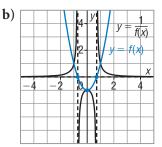
$$y=\frac{1}{f(x)}$$
.

b)
$$6 \frac{y}{y = f(x)}$$

 $4 \frac{y = f(x)}{f(x)}$
 $2 \frac{y = f(x)}{f(x)}$
 $0 \frac{y}{2} \frac{x}{4} \frac{x}{6} \frac{x}{8}$

The graph of y = f(x) has 1 *x*-intercept, so the graph of $y = \frac{1}{f(x)}$ has 1 vertical asymptote, x = 5, and has Shape 2. Horizontal asymptote: y = 0Plot points where the line y = 1intersects the graph of y = f(x). These points are common to both graphs. **11.** On the graph of each reciprocal function $y = \frac{1}{f(x)}$, sketch a graph of the quadratic function y = f(x).





The graph has one vertical asymptote, x = 5, so the graph of y = f(x) has vertex (5, 0). The line y = -1 intersects the graph at 2 points that are common to both graphs.

The graph has 2 vertical asymptotes, so the graph of y = f(x) has 2 *x*-intercepts. Plot points where the asymptotes intersect the *x*-axis. The point (0, -1) is on the line of symmetry, so (0, -1) is the vertex of y = f(x).