1. Multiple Choice Which solution is correct for $|x^2 - 6x + 5| = 5$?

A. no solution B. x = 0C. $x = 0; x = 6; x = \frac{1}{3}; x = \frac{2}{3}$ D. x = 0; x = 6

2. Multiple Choice Which function describes this graph?

A. y = |3x + 9| **B.** y = |3x - 9| **C.** $y = |-\frac{1}{3}x + 9|$ **D.** y = |9x + 3|

- **3.** Solve each equation.
 - a) |-4x + 4| = 2-4x + 4 = 2-(-4x + 4) = 2if -4x + 4 < 0 $if - 4x + 4 \ge 0$ that is, if $x \leq 1$ that is, if x > 1When $x \leq 1$: When *x* > 1: -4x + 4 = 2-4x = -2-(-4x + 4) = 2-4x + 4 = -24x = 6 $x=\frac{1}{2}$ $x=\frac{3}{2}$ $\frac{1}{2} \le 1$, so this root $\frac{3}{2} > 1$, so this root is a solution. is a solution. The solutions are $x = \frac{1}{2}$ and $x = \frac{3}{2}$.

b)
$$x + 1 = |x^2 - 4x + 5|$$

When $x^2 - 4x + 5 \ge 0$:
 $x + 1 = x^2 - 4x + 5$
 $0 = x^2 - 5x + 4$
0 = (x - 1)(x - 4)When $x^2 - 4x + 5 < 0$:
 $x + 1 = -(x^2 - 4x + 5)$
 $x + 1 = -x^2 + 4x - 5$
 $x^2 - 3x + 6 = 0$
 $x = \frac{3 \pm \sqrt{(-3)^2 - 4(1)(6)}}{2(1)}$
 $x = \frac{3 \pm \sqrt{-15}}{2}$
This is not a real number.

So, x = 1 and x = 4 are the solutions.

4. Sketch a graph of each absolute value function. Identify the intercepts, domain, and range. Write the functions in piecewise notation.

a)
$$y = |5x - 4|$$

Draw the graph of y = 5x - 4. It has *x*-intercept $\frac{4}{5}$. Reflect, in the *x*-axis, the part of the graph that is below the *x*-axis. The *x*-intercept is $\frac{4}{5}$, the *y*-intercept is 4, the domain of y = |5x - 4|is $x \in \mathbb{R}$, and the range is $y \ge 0$.

$$y = 5x - 4 \text{ when}$$
$$5x - 4 \ge 0, \text{ or } x \ge \frac{4}{5}$$

$$y = -(5x - 4)$$
, or
 $y = -5x + 4$ when
 $5x - 4 < 0$, or $x < \frac{4}{5}$

So, using piecewise notation:

$$y = \begin{cases} 5x - 4, & \text{if } x \ge \frac{4}{5} \\ -5x + 4, & \text{if } x < \frac{4}{5} \end{cases}$$

b)
$$y = |-x^2 + 2x + 8|$$

The graph of $y = -x^2 + 2x + 8$, or y = -(x - 4)(x + 2) opens down with *x*-intercepts 4 and -2.

Its vertex is on the axis of symmetry, x = 1, and has coordinates (1, 9). Reflect, in the *x*-axis, the part of the graph that is below the *x*-axis. From the graph, the *x*-intercepts are -2 and 4, the *y*-intercept is 8. The domain of $y = |-x^2 + 2x + 8|$ is $x \in \mathbb{R}$ and the range is $y \ge 0$. The graph of the quadratic function opens down, so between the *x*-intercepts, the graph is above the *x*-axis. For the graph of $y = |-x^2 + 2x + 8|$: For the graph of $y = |-x^2 + 2x + 8|$: For $-2 \le x \le 4$, the value of $-x^2 + 2x + 8 \ge 0$

For x < -2 or x > 4, the value of $-x^2 + 2x + 8 < 0$; that is, $y = -(-x^2 + 2x + 8)$, or $y = x^2 - 2x - 8$. So, using piecewise notation:

$$y = \begin{cases} -x^2 + 2x + 8, & \text{if } -2 \le x \le 4\\ x^2 - 2x - 8, & \text{if } x < -2 \text{ or } x > 4 \end{cases}$$

5. Sketch a graph of the function $y = \frac{1}{-3x(x-1)}$.

Label the asymptotes with their equations.

The graph of y = -3x(x - 1)opens down, has x-intercepts 0 and 1, and vertex $(0.5, \frac{3}{4})$. The graph of $y = \frac{1}{-3x(x - 1)}$ has vertical asymptotes x = 0 and x = 1, and a horizontal asymptote y = 0. Plot points where the line y = -1 intersects the graph of y = -3x(x - 1). These points are common to both graphs. Point $(0.5, -\frac{3}{4})$ lies on y = -3x(x - 1), so point $(0.5, \frac{4}{3})$ lies on $y = \frac{1}{-3x(x - 1)}$. The graph of the reciprocal function has Shape 3.

6. Use the graph of the reciprocal function $y = \frac{1}{f(x)}$ to graph the linear function y = f(x). Describe your strategy.

Vertical asymptote is x = -0.5, so graph of y = f(x) has x-intercept -0.5. Mark points at y = 1 and y = -1 on graph of $y = \frac{1}{f(x)}$, then draw a line through these points for the graph of y = f(x).