PRE-CALCULUS 11 QUADRATIC FUNCTIONS PROPERTIES OF QUADRATIC FUNCTIONS PART 2

A. Definitions

- 1. **quadratic function:** any function that can be written in the form: $y = ax^2 + bx + c$ or $f(x) = ax^2 + bx + c$. Where a,b and c are constants and $a \ne 0$.
- 2. **x-intercept:** the place where the curve crosses the x-axis. These are also referred to as the roots or zeros of the function.
- 3. **y-intercept:** the place where the curve crosses the y-axis. In the form of the quadratic function the c value represents the y-intercept.
- 4. **vertex:** the highest or lowest point of a quadratic function.
- 5. **axis of symmetry:** the imaginary line, through the vertex, that divides the quadratic function into two perfect halves.
- 6. maximum/minimum: the highest or lowest point of a quadratic function.
- B. Identifying Quadratic Functions Using First Differences

Determine whether each table represents a linear function or quadratic function.

x	У	
0	-4	5
1	-2	2
2	0	
3	2	

$$-2-4=2$$
 Constant difference indicates a Linear Function $2-0=2$

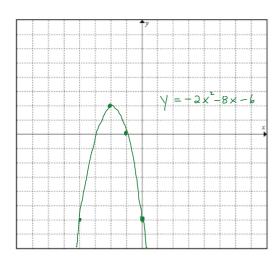
×	У	
0	1	4
1	-4	5
2	-11	
3	-20	

$$-4-1=-5$$
 Consistent difference decrease indicates $-11-4=-7$ a Quadratic function $-20-11=-9$

- C. Use a table of values to graph the following function, for the x values indicated. Then determine:
 - 1) the intercepts
 - 2) coordinates of the vertex
 - 3) equation of the axis of symmetry
 - 4) the domain of the function
 - 5) the range of the function

$$v = -2x^2 - 8x - 6$$

x	У
-4	-6
-3	0
-2	2
-1	O
0	- b


$$y = -2(-4)^{2} - 8(-4) - 6$$

$$y = -2(-3)^{2} - 8(-3) - 6$$

$$y = -2(-2)^{2} - 8(-2) - 6$$

$$y = -2(-1)^{2} - 8(-1) - 6$$

$$y = -2(0)^{2} - 8(0) - 6$$

1) x = 1 + (-3,0) + (-1,0) y = 1 + (0,-6)2) vertex (-2,2)3) Axis of Symmetry X = -24) Domain $X \in \mathbb{R}$ 5) Range $Y \leq 2$

Assignment : Properties of Quadratic Functions Assignment #4 – 8 only

Discuss the Ideas

IN GI

1. How do you know if a given equation represents a quadratic function?

2. How do you know if a given table of values represents a quadratic

3. Which characteristics of a quadratic function can be identified from the equation $y = ax^2 + bx + c$?

Exercises

When approximating answers, round to the nearest tenth.

0

Identify the y-intercept of the graph of each quadratic function.

a)
$$y = -\frac{1}{2}x^2 + 5x - 1$$

b)
$$y = 3 - 14x + 5x^2$$
 c) $y = -x^2 + 8x - 5$

c)
$$y = -x^2 + 8x - 5$$

$$\mathbf{d})\,y=-4x+3x^2$$

e)
$$y = \frac{4}{3}x^2$$

f)
$$\gamma = 16x^2 - \frac{9}{4}$$

5. State whether the vertex of the graph of each quadratic function is a maximum point or a minimum point.

a)
$$y = 2x^2 + 5x - 4$$
 b) $y = 5 - 3x^2$

b)
$$v = 5 - 3v^2$$

c)
$$y = 3x^2 - 3x - \frac{5}{4}$$

d)
$$y = 2x - 5x^2$$

e)
$$y = 4 + \frac{1}{2}x^2$$

f)
$$y = -3 + 4x + 2x^2$$

- 6. For the graph of each quadratic function:
 - i) Identify the vertical intercept.
 - ii) State whether the vertex is a maximum point or a minimum point.

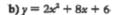
a)
$$\gamma = \frac{1}{2}x^2 + 3x + 2$$

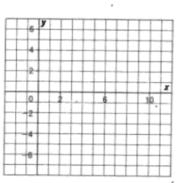
$$b) y = -\frac{1}{3}x^2 + 9x - \frac{7}{4}$$

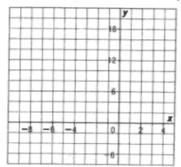
c)
$$V = 12 - 9t + 2t^2$$

d)
$$h = -5t^2 + 15t + 40$$

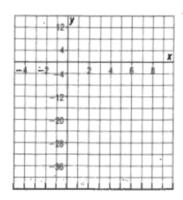
Identify whether each table of values represents a linear function, a quadratic function, or neither. Explain how you know.


۵)	x 0 -1 -2 -3 -4							
u,	X	. 0	-1	-2	-3	-4		
	y	-3	-2	0	4	12		


- **8.** Use a table of values to graph each quadratic function below, for the values of x indicated. Determine:
 - i) the intercepts
- ii) the coordinates of the vertex
- iii) the equation of the axis of symmetry
- iv) the domain of the function
- v) the range of the function


a)
$$y = -x^2 + 12x - 32$$

×	3.	4	5	6	7	8	9
У		-cwi a	- ALCOHOLD	78			



c)
$$y = -3x^2 + 24x - 45$$

6	х	1	2	3	4	5	6	7
	y							

9. a) Use graphing technology to graph each set of quadratic functions.

$$i) \ \gamma = x^2 + 2x$$

ii)
$$y = -x^2 - 2x$$

$$y = x^2 + 2x + 1$$

$$y = -x^2 - 2x - 1$$

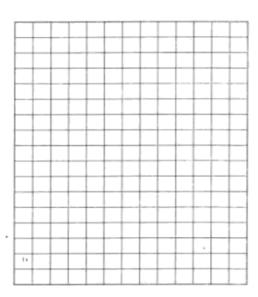
$$y = x^2 + 2x + 2$$

$$y=-x^2-2x-2$$

- b) How many x-intercepts may a parabola have?
- c) How many y-intercepts may a parabola have?
- 10. Use graphing technology to graph each quadratic function below. Determine:
 - i) the intercepts
- ii) the coordinates of the vertex
- iii) the equation of the axis of symmetry
- iv) the domain of the function v) the range of the function

a)
$$y = 0.5x^2 - 2x + 5$$

b)
$$y = -0.75x^2 - 6x + 19$$


b)
$$y = -0.75x^2 - 6x + 15$$
 c) $y = \frac{1}{2}x^2 - \frac{3}{2}x - 5$

Study Note

Ø

CHI, CR2

Write an equation of a quadratic function. Determine the characteristics of the function and show the strategies you used. Sketch a graph of the function and label the vertex, the axis of symmetry, and the intercepts.

ANSWERS

4. a) -1 b) 3 c) -5 d) 0 e) 0 f) $-\frac{9}{4}$ 5. a) minimum b) maximum c) maximum d) maximum e) minimum f) minimum 6. a) i) 2 ii) minimum b) i) $-\frac{7}{4}$ ii) maximum c) i) 12 ii) minimum d) i) 40' ii) maximum 7. a) neither b) quadratic 8. a) i) x: 4, 8; y: -32 ii) (6, 4) iii) x = 6 iv) $x \in \mathbb{R}$ v) $y \le 4$, $y \in \mathbb{R}$ b) i) x: -3, -1; y: 6 ii) (-2, -2) iii) x = -2 iv) $x \in \mathbb{R}$ v) $y \ge -2$, $y \in \mathbb{R}$ c) i) x: 3, 5; y: -45 ii) (4, 3) iii) x = 4 iv) $x \in \mathbb{R}$ v) $y \le 3$, $y \in \mathbb{R}$ 9. b) 0, 1, or 2 c) 1 10, a) i) no x-intercepts; y: -15 ii) (4, -3) iii) x = 4 iv) $x \in \mathbb{R}$ v) $y \ge 3$, $y \in \mathbb{R}$ b) i) no x-intercepts; y: -15 ii) (4, -3) iii) x = 4 iv) $x \in \mathbb{R}$ v) $y \ge -3$, $y \in \mathbb{R}$ c) i) x: -2, 5, y: -5 ii) (1.5, -6.125) iii) x = 1.5 iv) $x \in \mathbb{R}$ v) $y \ge -6.125$, $y \in \mathbb{R}$ d) i) x: approximately -0.7, -2.2; y: -2.875 ii) (0.75, -4) iii) x = 0.75 iv) $x \in \mathbb{R}$ v) $y \ge -4$, $y \in \mathbb{R}$ e) i) x: approximately 1.2, 2.3; y: -8.1875 ii) (1.75, 1) iii) x = 1.75 iv) $x \in \mathbb{R}$ v) $y \le 1$, $y \in \mathbb{R}$ f) i) no x-intercepts, y: -4 ii) (3, -1) iii) x = 3 iv) $x \in \mathbb{R}$ v) $y \le -1$, $y \in \mathbb{R}$ f) i) no x-intercepts, y: -4 ii) (3, -1) iii) x = 3 iv) $x \in \mathbb{R}$ v) $y \le -1$, $y \in \mathbb{R}$ f) i) no x-intercepts, y: -4 ii) (3, -1) iii) x = 3 iv) $x \in \mathbb{R}$ v) $y \le -1$, $y \in \mathbb{R}$ f) i) no x-intercepts, y: -4 ii) (3, -1) iii) x = 3 iv) $x \in \mathbb{R}$ v) $y \le -1$, $y \in \mathbb{R}$ f) i) no x-intercepts, y: -4 ii) (3, -1) iii) x = 3 iv) $x \in \mathbb{R}$ v) $y \le -1$, $y \in \mathbb{R}$ f) i) no x-intercepts, y: -4 ii) (3, -1) iii) x = 3 iv) $x \in \mathbb{R}$ v) $y \le -1$, $y \in \mathbb{R}$ 11. b) after about 2 s c) approximately $0 \le t \le 2.0$, the time the stone was in the air 12. a) same signs b) $x \ne 0$, $x \ne 0$ opposite signs 13. a) approximately -0.03

Multiple Choice

1. C 2. D