Properties of Quadratic Functions Part 2

PRE-CALCULUS 11
 QUADRATIC FUNCTIONS
 PROPERTIES OF QUADRATIC FUNCTIONS PART 2

A. Definitions

1. quadratic function: any function that can be written in the form:
$y=a x^{2}+b x+c$ or $f(x)=a x^{2}+b x+c$. Where a, b and c are constants and $a \neq 0$.
2. x-intercept: the place where the curve crosses the x-axis. These are also referred to as the roots or zeros of the function.
3. y-intercept: the place where the curve crosses the y-axis. In the form of the quadratic function the c value represents the y-intercept.
4. vertex: the highest or lowest point of a quadratic function.
5. axis of symmetry: the imaginary line, through the vertex, that divides the quadratic function into two perfect halves.
6. maximum/minimum: the highest or lowest point of a quadratic function.
B. Identifying Quadratic Functions Using First Differences

Determine whether each table represents a linear function or quadratic function.

x	y
0	-4
1	-2
2	0
3	2

$$
\left.\begin{array}{r}
-2--4=2 \\
0--2=2 \\
2-0=2
\end{array}\right\} \begin{aligned}
& \text { Constant difference } \\
& \text { indicates a } \\
& \text { Linear function }
\end{aligned}
$$

x	y
0	1
1	-4
2	-11
3	-20

$$
\left.\begin{array}{l}
-4-1=-5 \\
-11--4=-7 \\
-20--11=-9
\end{array}\right\} \begin{aligned}
& \text { Consistent difference } \\
& \text { decrease indicates } \\
& \text { a Quadratic Function }
\end{aligned}
$$

C. Use a table of values to graph the following function, for the x values indicated. Then determine:

1) the intercepts
2) coordinates of the vertex
3) equation of the axis of symmetry
4) the domain of the function
5) the range of the function

$$
y=-2 x^{2}-8 x-6
$$

x	y
-4	-6
-3	0
-2	2
-1	0
0	-6

$$
\begin{aligned}
& y=-2(-4)^{2}-8(-4)-6 \\
& y=-2(-3)^{2}-8(-3)-6 \\
& y=-2(-2)^{2}-8(-2)-6 \\
& y=-2(-1)^{2}-8(-1)-6 \\
& y=-2(0)^{2}-8(0)-6
\end{aligned}
$$

1) $x \operatorname{int}(-3,0) \&(-1,0) \quad y-\operatorname{int}(0,-6)$
2) vertex $(-2,2)$
3) Axis of Symmetry $x=-2$
4) Domain $X \in R$
5) Range $y \leq 2$

Assignment: Properties of Quadratic Functions Assignment \#4-8 only

Discuss the Ideas

Fixer

1. How do you know if a given equation represents a quadratic function?

θ

2. How do you know if a given table of values represents a quadratic function?
θ
3. Which characteristics of a quadratic function can be identified from the equation $\dot{y}=a x^{2}+b x+c$?
θ

Exercises

When approximating answers, round to the nearest tenth.
A
4. Identify the γ-intercept of the graph of each quadratic fiunction.
a) $y=-\frac{1}{2} x^{2}+5 x-1$
b) $y=3-14 x+5 x^{2}$
c) $y=-x^{2}+8 x-5$
d) $y=-4 x+3 x^{2}$
e) $y=\frac{4}{3} x^{2}$
f) $y=16 x^{2}-\frac{9}{4}$
5. State whether the vertex of the graph of each quadratic function is a maximum point or a minimum point.
a) $y=2 x^{2}+5 x-4$
b) $y=5-3 x^{2}$
c) $y=3 x^{2}-3 x-\frac{5}{4}$
d) $y=2 x-5 x^{2}$
e) $y=4+\frac{1}{2} x^{2}$
f) $y=-3+4 x+2 x^{2}$
6. For the graph of each quadratic function:
i) Identify the vertical intercept.
ii) State whether the vertex is a maximum point or a minimum point.
a) $y=\frac{1}{2} x^{2}+3 x+2$
b) $y=-\frac{1}{3} x^{2}+9 x-\frac{7}{4}$
c) $V=12-9 t+2 t^{2}$
d) $h=-5 t^{2}+15 t+40$

B
7. Identify whether each table of values represents a linear function, a quadratic function, or neither. Explain how you know.

a) | \boldsymbol{x} | 0 | -1 | -2 | -3 | -4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| \boldsymbol{y} | -3 | -2 | 0 | 4 | 12 |

b)	x	0	2	4	6	8
y	5	0	-7	-16	-27	

8. Use a table of values to graph each quadratic function below, for the values of x indicated. Determine:
$\begin{array}{ll}\text { i) the intercepts } & \text { ii) the coordinates of the vertex }\end{array}$
iii) the equation of the axis of symmetry
iv) the domain of the function \quad v) the range of the function
a) $y=-x^{2}+12 x-32$

x	3	4	5	6	7	8	9
y							

b) $y=2 x^{2}+8 x+6$

\boldsymbol{x}	-5	-4	-3	-2	-1	0
\boldsymbol{y}						

c) $y=-3 x^{2}+24 x-45$

x	1	2	3	4	5	6	7
y							

202. 9. a) Use graphing technology to graph each set of quadratic functions.
i) $y=x^{2}+2 x$

$$
y=x^{2}+2 x+1
$$

$$
y=x^{2}+2 x+2
$$

ii) $y=-x^{2}-2 x$

$$
y=-x^{2}-2 x-1
$$

$$
y=-x^{2}-2 x-2
$$

b) How many x-intercepts may a parabola have?
c) How many y-intercepts may a parabola have?
10. Use graphing technology to graph each quadratic function below. Determine:
i) the intercepts
ii) the coordinates of the vertex
iii) the equation of the axis of symmetry
iv) the domain of the function v) the range of the function
a) $y=0.5 x^{2}-2 x+5$
b) $y=-0.75 x^{2}-6 x+15$
c) $y=\frac{1}{2} x^{2}-\frac{3}{2} x-5$

Study Note

Write an equation of a quadratic function. Determine the characteristics of the function and show the strategies you used. Sketch a graph of the function and label the vertex, the axis of symmetry, and the intercepts.

ANSWERS

$\begin{array}{lllllll}\text { 4. a) }-1 & \text { b) } 3 & \text { c) }-5 & \text { d) } 0 & \text { e) } 0 & \text { f) }-\frac{9}{4} & 5 . \\ \text { a) minimum } & \text { b) maximum }\end{array}$ $\begin{array}{lllll}\text { c) maximum } & \text { d) maximum } & \text { e) minimum } & \text { f) minimum } & \text { 6. a) i) } 2 \\ \text { ii) minimum }\end{array}$ $\begin{array}{lllll}\text { b) i) }-\frac{7}{4} & \text { ii) maximum } & \text { c) } \text { i) } 12 & \text { ii) minimum } & \text { d) i) } 40^{\circ}\end{array}$ i) maximum \quad 7. a) neither $\begin{array}{lllll}\text { b) quadratic } & \text { 8. a) i) } x: 4,8 ; y:-32 & \text { ii) }(6,4) & \text { iH) } x=6 & \text { iv) } x \in R\end{array}$ v) $y \leq 4, y \in \mathbf{R}$ $\begin{array}{llll}\text { b) } 1 \text {) } x:-3,-1 ; y: 6 & \text { i) }(-2,-2) & \text { iil) } x=-2 & \text { iv) } x \in \mathbf{R}\end{array} \quad$ v) $y \geq-2, y \in \mathbf{R}$ $\begin{array}{llllll}\text { c) }) \\ \text { i) } & 3,5 ; & y:-45 & \text { ii) }(4,3) & \text { iii) } x=4 & \text { fv) } x \in \mathbf{R}\end{array}$ v) $y \leq 3, y \in \mathbb{R} \quad$ 9. b) 0,1 , or 2 $\begin{array}{llll}\text { c) } 1 & \text { 10, a) i) no } x \text {-intercepts; } y: 5 & \text { ii) (2,3) } & \text { iii) } x=2\end{array}$ fv) $x \in \mathbf{R} \quad$ v) $y \geq 3, y \in \mathbf{R}$ $\begin{array}{lllll}\text { b) i) } n o x \text {-intercepts; } y:-15 & \text { ii) }(4,-3) & \text { iii) } x=4 & \text { (v) } x \in \mathbf{R} & \text { v) } y \leq-3, y \in \mathbf{R}\end{array}$ $\begin{array}{llllll}\text { c) i) } x:-2,5, y:-5 & \text { Hi) }(1.5,-6.125) & \text { iiii) } x=1.5 & \text { fv) } x \in \mathbf{R} & \text { v) } y \geq-6.125, y \in \mathbf{R}\end{array}$ d) i) x : approximately $-0.7,2.2 ; y_{:}-2.875$ il) $(0.75,-4)$. iil) $x=0.75$. iv) $x \in \mathbb{R} \quad$ v) $y \geq-4, y \in \mathbb{R} \quad$ e) i) $x:$ approximately 1.2, 2.3; $y:-8.1875$. $\begin{array}{llll}\text { ii) }(1.75,1) \text {. Hii) } x=1.75 & \text { (v) } x \in \mathbb{R} & \text { v) } y \leq 1, \gamma \in R & \text { f) } i) \text { no } x \text {-intercepts, } y:-4\end{array}$ $\begin{array}{llll}\text { ii) }(3,-1) & \text { iii) } x=3 & \text { iv) } x \in \mathbf{R} & \text { v) } y \leq-1, y \in \mathbf{R} \\ \text { 11. b) after about } 2 \text {; }\end{array}$ c) approximately $0 \leq t \leq 2.0$, the time the stone was in the air 12. a) same signs b) $a \neq 0, c=0, \quad$ c) opposite signs $\quad 13$. a) approximately -0.03

Multiple Choice

1. C 2.D
