PRE-CALCULUS 11
 QUADRATIC FUNCTIONS
 PROPERTIES OF QUADRATIC FUNCTIONS REVIEW

A. Definitions

1. quadratic function: any function that can be written in the form:
$y=a x^{2}+b x+c$ or $f(x)=a x^{2}+b x+c$. Where a, b and c are constants and $a \neq 0$.
2. \mathbf{x}-intercept: the place where the curve crosses the x-axis. These are also referred to as the roots or zeros of the function.
3. y-intercept: the place where the curve crosses the y-axis. In the form of the quadratic function the c value represents the y-intercept.
4. vertex: the highest or lowest point of a quadratic function.
5. axis of symmetry: the imaginary line, through the vertex, that divides the
quadratic function into two perfect halves.
6. maximum/minimum: the highest or lowest point of a quadratic function.
B. Properties of a Quadratic Function

Remember the important properties of a quadratic function.

The axis of symmetry is always represented by an equation

$$
x=?
$$

C. Maximum/Minimum Points

Remember that the vertex of a quadratic function will represent the highest/lowest point of the parabola. Whether the graph will have a maximum or a minimum point is determined by the sign of the " d " value in the function.

Positive " a " Value

Upright Parabola
Minimum Graph

Negative " a " Value

$$
1
$$

Inverted Parabola Maximum Graph
D. Examples

For each of the following quadratic functions, determine the x-intercepts (zeros), y-intercept, vertex, the equation of the axis of symmetry, and whether the graph is a maximum or minimum.

1) $y=x^{2}+2 x-3$

$$
\begin{aligned}
& 0=x^{2}+2 x-3 \\
& 0=(x+3)(x-1) \\
& 0=x^{2}+3 \quad 0=x-3 \\
& -3 \quad+1 \\
& x-\operatorname{int}(-3,0) \&(1,0) \\
& x-\operatorname{coosd}=\frac{-3+1}{2}=-1 \\
& y=(-1)^{2}+2(-1)-3 \\
& y-\operatorname{coord}=-4 \\
& \text { vertex }(-1,-4) \\
& y \text {-int }(0,-3)
\end{aligned}
$$

Axis of Sym $x=-1$ Minimum

$$
\begin{aligned}
& \text { 2) } \begin{array}{l}
y=-2 x^{2}-12 x+32 \\
0=-2 x^{2}-12 x+32 \\
0=-2\left(x^{2}+6 x-16\right) \\
0=-2(x+8)(x-2) \\
0=x+8 \quad 0=x-2 . \\
x-\operatorname{sint}(-8,0) \text { \& }(2,0) \\
x-\operatorname{coord}=\frac{-8+2}{2}=-3 \\
y=-2(-3)^{2}-12(-3)+32 . \\
y \text {-cord }=50 \\
\text { Vertex }(-3,50) \\
y \text {-int }(0,32) \\
\hline
\end{array},
\end{aligned}
$$

$$
\begin{array}{ll}
-16 & 0
\end{array}=-2 x^{2}-12 x+320.1(\text { (2) }) \quad 0=-2\left(x^{2}+6 x-16\right)
$$

Axis of sym $x=-3$ Maximum
(b) $)_{4}^{-12} /(-2)$

$$
\text { 3) } \begin{aligned}
& y=\frac{1}{2} x^{2}+2 x-6 \\
& 0=\frac{1}{2} x^{2}+2 x-6 \\
& 0=\frac{1}{2}\left(x^{2}+4 x-12\right) \\
& 0=\frac{1}{2}(x+6 x-2) \\
& 0=x \pm 6 \quad 0=x-2.2 \\
& -6 \quad x-2.6(2,0) . \\
& x-\operatorname{int}(-6,0) \neq-\frac{2}{2} \\
& x-\operatorname{coord}=\frac{-6+2}{2}= \\
& y=\frac{1}{2}(-2)^{2}+2(-2)-6 \\
& y-\cos d=-\frac{8}{=} \\
& \text { vertex }(-2,-8) . \\
& y \text {-int }(0,-6) \\
& \hline
\end{aligned}
$$

A. For each of the following quadratic functions, determine the coordinates of the x intercepts, y-intercept and vertex, then graph the function and state the domain and range.

1) $y=x^{2}+6 x+8$
2) $y=2 x^{2}-8$
3) $y=-x^{2}+4 x-3$
4) $y=-x^{2}+2 x-3$
B. For each of the following quadratic functions, determine, the vertex, the equation for the axis of symmetry whether the graph is a maximum or minimum.
5) $y=x^{2}-8 x+12$
6) $y=x^{2}+6 x-7$
7) $y=-2 x^{2}+2 x+24$
8) $y=-x^{2}-x+6$
9) $y=\frac{1}{2} x^{2}+2 x-\frac{5}{2}$
10) $y=3 x^{2}-9 x-30$
11) $y=x^{2}+3 x-4$
12) $y=\frac{1}{3} x^{2}-\frac{5}{3} x+\frac{4}{3}$
```
1) x-int (-2,0) , (-4,0)
    y-int (0,8)
    vertex (-3,-1)
    Domain }x\in
    Range }y\geq-
```

4) x-int $(-1,0),(3,0)$
y-int $(0,3)$
vertex $(1,4)$
Domain $x \in R$
Range $y \leq 4$
5) vertex $(0.5,24.5)$
axis of sym $x=0.5$
Maximum
6) vertex $(1.5,-36.75)$
axis of sym $x=1.5$
Minimum
7) x-int $(-2,0),(2,0)$
y-int $(0,-8)$
vertex $(0,-8)$
Domain $x \in R$
Range $y \geq-8$
8) vertex $(4,-4)$
axis of sym $x=4$
Minimum
9) vertex $(-0.5,6.25)$ axis of sym $x=-0.5$ Maximum
10) vertex ($-1.5,-6.25$) axis of sym $x=-1.5$ Minimum
11) x-int $(1,0),(3,0)$ y-int $(0,-3)$ vertex $(2,-1)$
Domain $x \in R$
Range $y \geq-1$
12) vertex $(-3,-16)$
axis of sym $x=-3$
Minimum
13) vertex ($-2,-4.5$)
axis of sym $x=-2$
Minimum
14) vertex $(2.5,-0.75)$ axis of sym $x=2.5$ Minimum

					†					
				\bigcirc						
	,			-				-		,
0										

-	-					*			
	-		-	-					
	-		-	\square					
	\bigcirc								
	-			,					

					- ${ }^{+}$				
	-								
	-								
	1	-							
.									
\cdots									

					${ }^{+}$					
			-							
								\cdots		
				-				-		
				-				\ldots		
				-				\cdots	-	
				-						

\square	-			\square		¢				-
	\square			\square						
	.			\cdots						
	-			\cdots						
	-									
	-									
				-						
				\square						
				-						
				\square						
				\cdots						

	-	+			¢					
	-	-								

