PRE-CALCULUS 11 EXPONENTS RATIONAL EXPONENTS

A. Definitions

- 1. Rational Number: a number which can be written in the form of a fraction.
- 2. Rational Exponent: an exponent which is written in the form of a fraction.
- 3. Radical: a mathematical expression containing a root symbol.

B. Exploring Rational Exponents

A rational exponent represents two separate operations attached to the base number. Each number of the fraction represents a different operation. The "top" number of the fraction represents the exponent that is applied to the base number, the "bottom" number represents the root that is applied.

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 or $(\sqrt[n]{a})^m$

C. Examples

1) Determine the exact value of the following.

a)
$$\left(\frac{9}{4}\right)^{\frac{1}{2}} = \frac{\left(9\right)^{\frac{1}{2}}}{\left(4\right)^{\frac{1}{2}}}$$
 b) $\underbrace{\left(\frac{3}{4}\right)^{\frac{3}{2}}}_{2} = \underbrace{\frac{1}{4^{\frac{3}{2}}}}_{2}$ c) $\underbrace{4^{\frac{5}{2}}}_{2} = \underbrace{\frac{1}{4^{\frac{5}{2}}}}_{3} = \underbrace{\frac{1}{4^{\frac{5}{2}}}}_{3} = \underbrace{\frac{1}{4^{\frac{5}{2}}}}_{3} = \underbrace{\frac{1}{8}}_{3}$

2) Simplify the following. Write your answer as a power and a radical.

a)
$$y^{\frac{5}{7}} \div y^{\frac{2}{7}} = \sqrt{\frac{3}{7}}$$

b)
$$\left(\frac{x^2}{y}\right)^{-\frac{1}{2}} = \frac{x}{\sqrt{\frac{1}{2}}} = \frac{x}{\sqrt{\frac{1}{2}}}$$

$$= \sqrt{\frac{1}{2}}$$
or $\sqrt{\frac{1}{2}}$

c)
$$\left(\frac{3}{4m^4}\right)^{3m-\frac{1}{2}} = 2m$$

$$= 2m$$
or $24m$

d)
$$\sqrt{\sqrt{x^3}}$$
 = $\left(\frac{\frac{3}{2}}{X}\right)^{\frac{1}{2}} = X$
= $\left(\frac{\frac{3}{2}}{X}\right)^{\frac{1}{2}} = X$

Assignment: Rational Exponents Assignment #1 - 8

Write an equivalent expression using exponents.

a)
$$\sqrt{\sqrt{a^3}}$$

b)
$$\sqrt[3]{64x^6}$$

e)
$$\frac{1}{\sqrt[3]{\sqrt{5y^{12}}}}$$

Complete Assignment Questions #1 - #18

Assignment

Write each power as a radical.

a)
$$a^{\frac{4}{5}}$$

c)
$$c^{\frac{1}{4}}$$

d)
$$x^{-\frac{2}{3}}$$

a)
$$a^{\frac{4}{5}}$$
 b) $b^{\frac{3}{2}}$ c) $c^{\frac{1}{4}}$ d) $x^{-\frac{2}{5}}$ e) $y^{-\frac{1}{3}}$

g)
$$(5h)^{\frac{2}{3}}$$

f)
$$5h^{\frac{2}{3}}$$
 g) $(5h)^{\frac{2}{3}}$ h) $-r^{\frac{5}{4}}$ i) $(-r)^{\frac{5}{4}}$ j) $2x^{-\frac{1}{2}}$

2. Write each radical as a power.

a)
$$\sqrt[5]{x^3}$$

b)
$$\sqrt[5]{a^4}$$

c)
$$\sqrt{d^5}$$

d)
$$\frac{1}{\sqrt{5}}$$

write each radical as a power.
a)
$$\sqrt[5]{x^3}$$
 b) $\sqrt[5]{a^4}$ c) $\sqrt{a^5}$ d) $\frac{1}{\sqrt[4]{y}}$ e) $\frac{1}{\sqrt[4]{h^5}}$

f)
$$(\sqrt[4]{2y-3})^{-3}$$
 g) $-\sqrt[3]{x^2}$ h) $\sqrt[3]{-x^2}$ j) $\sqrt[3]{(-x)^2}$

h)
$$\sqrt[3]{-x^2}$$

i)
$$\sqrt[3]{(-x)^2}$$

1)
$$\sqrt[3]{(-x)^{-2}}$$

- 3. Simplify the following. Write each expression as a power and as a radical.

 - a) $x^{\frac{7}{2}} \times x$ b) $y^{\frac{6}{3}} + y^{\frac{4}{3}}$ c) $(a^{\frac{2}{3}})^{\frac{3}{4}}$ d) $(e^{3}f)^{\frac{1}{2}}$

- e) $x^{\frac{1}{2}} \times x^{-1}$ f) $y^{\frac{2}{7}} + y^{\frac{5}{7}}$ g) $\left(\frac{x}{y^4}\right)^{\frac{1}{2}}$ h) $\left(\frac{x^2}{y}\right)^{-\frac{3}{2}}$
- Write as a power and evaluate.
 - a) $\sqrt[3]{64}$
- **b)** $\frac{1}{\sqrt[4]{625}}$ **c)** $\sqrt{\sqrt{2401}}$
- 5. Simplify the following. Write each expression as a power and as a radical.

- a) $2x^{\frac{3}{8}} \times 5x^{-\frac{1}{8}}$ b) $64(a^{\frac{1}{2}})^{\frac{1}{3}}$ c) $((64a)^{\frac{1}{3}})^{\frac{1}{2}}$ d) $(64a^{\frac{1}{3}})^{\frac{1}{2}}$

- e) $\frac{y^{\frac{2}{3}}y^{\frac{1}{2}}}{y^{\frac{1}{4}}}$ f) $\frac{a^3b^{\frac{1}{2}}}{b^3(a^{\frac{3}{2}})^2}$ g) $\frac{10x^{\frac{1}{3}}}{5x^{-\frac{3}{3}}}$ h) $\frac{(a^4)^{\frac{1}{3}}}{9} + \frac{a}{81^{3/4}}$

- 6. Simplify. Write each expression in simplest radical form and as a power. a) $\sqrt[3]{27x^7}$ b) $\sqrt[4]{81a^3}$ c) $\sqrt[3]{(-270a)}$
- **b**) $\sqrt[4]{81a^3}$

- d) $\left(\sqrt[4]{x^3}\right)\left(\sqrt{x}\right)$ e) $\sqrt[3]{a} \times \sqrt[3]{a}$ f) $\left(\sqrt[4]{x^4y^3}\right)^{\frac{3}{2}}$
- 7. Write an equivalent expression using exponents.

a)
$$\sqrt{\sqrt{x^5}}$$
 b) $\sqrt[3]{\sqrt{a^8}}$

b)
$$\sqrt[3]{\sqrt{a^8}}$$

c)
$$\sqrt[3]{\sqrt{16y^{12}}}$$

d)
$$\sqrt[3]{\sqrt[4]{x^{\frac{2}{3}}}}$$

e)
$$\left(\frac{25\sqrt[3]{x^5}}{5x^{\frac{1}{3}}}\right)^2$$
 f) $\left(\sqrt[4]{\sqrt[3]{y^{\frac{1}{3}}}}\right)^5$

f)
$$\left(\sqrt[4]{\sqrt[4]{y^{\frac{1}{3}}}}\right)^5$$

8. Simplify and express each as a power with positive exponents.

a)
$$\frac{6x^{-\frac{1}{4}} \cdot 2x^{\frac{5}{2}}}{-3x^{-\frac{3}{4}}}$$

a)
$$\frac{6x^{-\frac{1}{4}} \cdot 2x^{\frac{5}{2}}}{-3x^{-\frac{3}{4}}}$$
 b) $\left(\frac{768b^{-1}}{3c^{-1}}\right)^{-\frac{3}{4}}$ c) $\frac{a^{\frac{1}{3}}(a^{\frac{2}{3}})^{-\frac{5}{3}}}{a^{\frac{4}{3}}}$

c)
$$\frac{a^{\frac{1}{3}}(a^{\frac{2}{3}})^{-\frac{5}{3}}}{a^{\frac{4}{3}}}$$

Answer Key

Unless otherwise indicated in the question, radicals can be given in the form $\sqrt[n]{x^m}$ or $\left(\sqrt[n]{x}\right)^m$ and power can be given in the form x^{-n} or $\frac{1}{x^{-n}}$. Equivalent versions of some answers are possible.

- 1. a) $\sqrt[5]{a^4}$ b) $\sqrt{b^3}$ c) $\sqrt[5]{c}$ d) $\frac{1}{\sqrt[5]{x^2}}$ e) $\frac{1}{\sqrt[3]{y}}$ f) $5\sqrt[5]{h^2}$

- g) $\sqrt[3]{(5h)^2}$ h) $-\sqrt[4]{r^5}$ i) $\sqrt[4]{(-r)^5}$ j) $\frac{\sqrt{x}}{\sqrt{x}}$
- 2. a) $x^{\frac{3}{5}}$ b) $a^{\frac{4}{5}}$ c) $a^{\frac{5}{2}}$ d) $y^{-\frac{1}{4}}$ e) $h^{-\frac{5}{4}}$ f) $(2y-3)^{-\frac{3}{4}}$ g) $-x^{\frac{2}{3}}$ h) $-x^{\frac{2}{3}}$ i) $(-x)^{\frac{2}{3}}$

- 3. a) $x^{\frac{9}{2}} = \sqrt{x^9}$ b) $y^{\frac{2}{5}} = \sqrt[4]{y^2}$ c) $a^{\frac{3}{10}} = \sqrt[19]{a^3}$ d) $e^{\frac{9}{2}f^{\frac{3}{2}}} = e^4f\sqrt{ef}$
- e) $\frac{1}{x^{\frac{1}{2}}} = \frac{1}{\sqrt{x}}$ f) $\frac{1}{\sqrt[3]{7}} = \frac{1}{\sqrt[3]{y^3}}$ g) $\frac{x^{\frac{1}{2}}}{y^2} = \frac{\sqrt{x}}{y^2}$ h) $\frac{y^{\frac{3}{2}}}{y^3} = \frac{\sqrt{y^3}}{y^3}$
- 4. a) $64^{\frac{1}{6}} = 2$ b) $625^{-\frac{1}{4}} = \frac{1}{5}$ c) $2401^{\frac{1}{4}} = 7$

- 5. a) $10x^{\frac{1}{4}} = 10\sqrt[6]{x}$ b) $64a^{\frac{1}{6}} = 64\sqrt[6]{a}$ c) $2a^{\frac{1}{6}} = 2\sqrt[6]{a}$ d) $8a^{\frac{1}{6}} = 8\sqrt[6]{a}$

- e) $y^{\frac{11}{12}} = \sqrt[3]{y^{11}}$ f) $\frac{1}{\sqrt[5]{2}} = \frac{1}{\sqrt{b^5}}$ g) $2x^{\frac{4}{5}} = 2\sqrt[5]{x^4}$ h) $3a^{\frac{1}{3}} = 3\sqrt[3]{a}$
- **6.** a) $3x^2\sqrt[3]{x} = 3x^{\frac{7}{3}}$ b) $3\sqrt[4]{a^3} = 3a^{\frac{3}{4}}$ c) $-3\sqrt[3]{10y} = -3(10y)^{\frac{1}{3}}$

- d) $\sqrt[4]{x^5} = x^{\frac{5}{4}}$ e) $\sqrt[3]{a^2} = a^{\frac{2}{3}}$ f) $\sqrt[8]{x^{12}y^9} = x^{\frac{3}{2}}y^{\frac{9}{8}}$
- 7. a) $x^{\frac{5}{4}}$ b) $a^{\frac{4}{3}}$ c) $4^{\frac{1}{3}}y^2$ d) $x^{\frac{1}{18}}$ e) $25x^{\frac{8}{3}}$ f) $y^{\frac{1}{12}}$

- 8. a) $-4x^3$ b) $\frac{b^{\frac{3}{8}}}{a^{\frac{3}{8}}}$ c) $\frac{1}{\frac{5}{2}}$