PRE-CALCULUS 11 RATIONAL EXPRESSIONS SIMPLIFYING RATIONAL EXPRESSIONS PART 2

A. Definitions

- 1. rational expression: an algebra expression that can be written in the form of a fraction.
- 2. **non-permissible values (undefined value):** values that make the denominator of the fraction zero.

B. Examples

1) Determine the non-permissible values and simplify the following.

a)
$$\frac{18x^3}{10x^3}$$
 term $x \neq 0$, $y \neq 0$
b) $\frac{2m-6}{12-4m}$ $\frac{2m-6}{-4m+12}$ exp $\frac{-4m+12}{2} = 0$

$$\frac{-4m}{-4} = \frac{-12}{-4}$$

$$\frac{-4m}{5}$$

$$\frac{-4m}{5} = \frac{-12}{-4}$$

$$m \neq 3$$

c)
$$\frac{x-5}{7x^2-35x} \stackrel{\text{def}}{\text{def}}$$
 $\Rightarrow x^2-35x=0$
 \Rightarrow

$$= \frac{m^{2} - 9m + 20}{2m^{2} - 32 \text{ for }}$$

$$= \frac{m^{2} - 9m + 20}{2(m^{2} - 32 \text{ for })}$$

$$= \frac{(m - 5)(m + 4)(m - 4) = 0}{2(m + 4)(m - 4)}$$

$$= \frac{(m - 5)(m + 4)(m - 4)}{2(m + 4)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(m + 4)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(m + 4)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(m + 4)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

$$= \frac{2(\alpha^{2} + 4\alpha - 1\alpha)}{2(\alpha + 4\alpha)(\alpha + 3)}$$

Assignment: Simplifying Rational Expressions Assignment #4, 5, 7, 8, 9, 10, 11

4. Determine the nonpermissible values of the variable.

a)
$$\frac{6}{8x-7}$$

b)
$$\frac{y}{10y + 20}$$

e)
$$\frac{5a}{5-a}$$

a)
$$\frac{6}{8x-7}$$
 b) $\frac{y}{10y+20}$ c) $\frac{5a}{5-a}$ d) $\frac{a^2+7a+12}{(a+4)(a+5)}$ e) $\frac{12y^2-2}{y}$

e)
$$\frac{12y^2-2}{y}$$

f)
$$\frac{1+16x^2}{1-16x^2}$$

g)
$$\frac{40p^3-4}{8a^3}$$

f)
$$\frac{1+16x^2}{1-16x^2}$$
 g) $\frac{40p^3-4}{8a^3}$ h) $\frac{3}{x^2+13x+12}$ i) $\frac{d}{d^2-8d+16}$

i)
$$\frac{d}{d^2 - 8d + 16}$$

5. Express in simplest form stating the nonpermissible values of the variable.

a)
$$\frac{4ab}{16a}$$

b)
$$\frac{25x^3y^4}{5y^9}$$

c)
$$\frac{(a+3)(a-8)}{(a+1)(a-8)}$$

a)
$$\frac{4ab}{16a}$$
 b) $\frac{25x^3y^4}{5y^9}$ c) $\frac{(a+3)(a-8)}{(a+1)(a-8)}$ d) $\frac{(x+7)(x-2)}{x(x-2)(x+14)}$

e)
$$\frac{y+9}{y^2-81}$$

f)
$$\frac{25y^2-3}{5y+6}$$

e)
$$\frac{y+9}{y^2-81}$$
 f) $\frac{25y^2-36}{5y+6}$ g) $\frac{64-9p^2}{(8-3p)(3+8p)}$ h) $\frac{x^2-100}{(x+10)^2}$

h)
$$\frac{x^2-100}{(x+10)^2}$$

- 6. The area of a soccer field is represented by $a^2 12a + 32$ square metres.
 - a) Find a simplified expression for the length of the field if the width can be represented by a-8 metres.
 - b) Calculate the area of the field if a = 90.

a)
$$\frac{(t+3)^2}{(t+1)(t+3)}$$

b)
$$\frac{x^2-1}{x^2+2x+1}$$

e)
$$\frac{e^2 + 2e - 35}{e^2 + 14e + 49}$$

a)
$$\frac{(t+3)^2}{(t+1)(t+3)}$$
 b) $\frac{x^2-1}{x^2+2x+1}$ c) $\frac{e^2+2e-35}{e^2+14e+49}$ d) $\frac{m^2-2m-15}{m^2+12m+27}$

e)
$$\frac{y^2 + 4y}{y^2 - 16}$$

f)
$$\frac{x^2 + 9x - 22}{x^2 + 12x + 11}$$

e)
$$\frac{y^2 + 4y}{y^2 - 16}$$
 f) $\frac{x^2 + 9x - 22}{x^2 + 12x + 11}$ g) $\frac{a^2 + 11a + 10}{a^2 + 8a - 20}$ h) $\frac{p^2 + 5p + 6}{p^2 - 4}$

h)
$$\frac{p^2+5p+6}{p^2-4}$$

8. When simplified the rational expression $\frac{a^2+a-2}{a^2-1}$ can be reduced to

A.
$$\frac{a-2}{-1}$$
B. $\frac{a-2}{a-1}$
C. $\frac{a+2}{a+1}$

$$\mathbf{B.} \quad \frac{a-2}{a-1}$$

C.
$$\frac{a+2}{a+1}$$

$$\mathbf{D.} \quad \frac{a-2}{a+1}$$

9.
$$\frac{(x-y)^2}{x^2-y^2}$$
 is equivalent to

A. 0
B. 1
C.
$$\left(\frac{1}{x} - \frac{1}{y}\right)^2$$

$$\mathbf{D.} \quad \frac{x-y}{x+y}$$

10. In the rational expression $\frac{a-3}{a(a+7)}$ the nonpermissible value(s) of a are

11. The rational expressions $\frac{x^2 + 13x + 40}{x^2 - 13x + 40}$ and $\frac{64 + x^2}{64 - x^2}$ have one nonpermissible

To the nearest tenth, this nonpermissible value is _____.

(Record your answer in the numerical response box from left to right)

Answer Key

1. a)
$$7(y-7)$$
 b) $4(a^2+4)$ c) $4(a-2)(a+2)$ d) $-3c(1+9c)$ e) $2(5x-3)(5x+3)$ f) $(10-t)(10+t)$ g) $(a-2)(a+2)(a^2+4)$ h) $3x(x-4)(x+4)(x^2+16)$

2. a)
$$(x+7)(x+3)$$
 b) $(y-2)^2$ c) $(t-9)(t+8)$ d) $b(b+8)(b-5)$ e) $(3a+1)(a-2)$ f) $(4p+9)(2p+1)$ g) $5(2p-1)(p+3)$ h) $3(3x-2)^2$

4. a)
$$x \neq \frac{7}{8}$$
 b) $y \neq -2$ c) $a \neq 5$ d) $a \neq -5, -4$ e) $y \neq 0$
f) $x \neq \pm \frac{1}{4}$ g) $q \neq 0$ h) $(x \neq -12, -1)$ i) $d \neq 4$

4. a)
$$x \neq \frac{7}{8}$$
 b) $y \neq -2$ c) $a \neq 5$ d) $a \neq -5, -4$ e) $y \neq 0$
f) $x \neq \pm \frac{1}{4}$ g) $q \neq 0$ h) $(x \neq -12, -1)$ i) $d \neq 4$
5. a) $\frac{b}{4} \cdot a \neq 0$ b) $\frac{5x^3}{y^5}$, $y \neq 0$ c) $\frac{a+3}{a+1}$, $a \neq -1, 8$ d) $\frac{x+7}{x(x+14)}$, $x \neq -14, 0, 2$
e) $\frac{1}{y-9}$, $y \neq \pm 9$ f) $5y-6$, $y \neq -\frac{6}{5}$ g) $\frac{8+3p}{3+8p}$, $p \neq -\frac{3}{8}$, $\frac{8}{3}$ h) $\frac{x-10}{x+10}$, $x \neq -10$

6. a) a-4 metres b) 7052 square metres

7. a)
$$\frac{t+3}{t+1}$$
, $t \neq -1$, 3 b) $\frac{x-1}{x+1}$, $x \neq -1$ c) $\frac{e-5}{e+7}$, $e \neq -7$ d) $\frac{m-5}{m+9}$, $m \neq -9$, -3 e) $\frac{y}{y-4}$, $y \neq \pm 4$ f) $\frac{x-2}{x+1}$, $x \neq -11$, -1 g) $\frac{a+1}{a-2}$, $a \neq -10$, 2 h) $\frac{p+3}{p-2}$, $p \neq \pm 2$