Solving Quadratic Inequalities in One Variable

PRE-CALCULUS 11

INEQUALITIES \& SYSTEMS OF EQUATIONS
SOLVING QUADRATIC INEQUALITIES IN ONE VARIABLE

A. Definitions

1. inequality: a mathematical statement showing that sides of an equation are not equal. ex) $>,<, \geq, \leq, \neq$
2. quadratic equation: any quadratic equation that can be written in the form:

$$
a x^{2}+b x+c=0, \text { where } a, b, \text { and } c \text { are constants and } a \neq 0 .
$$

3. quadratic inequality: any quadratic inequality that can be written in the form:

$$
\begin{aligned}
& a x^{2}+b x+c<0 \text { or } a x^{2}+b x+c \leq 0 \\
& a x^{2}+b x+c>0 \text { or } a x^{2}+b x+c \geq 0
\end{aligned}
$$

where a, b, and c are constants and $a \neq 0$.
4. critical values: the x-intercepts of the quadratic equation used to help determine the answers) to a quadratic inequality.

B. Solving a Quadratic Inequality Using a Number Line and Interval Test Points

1) $2 x^{2}-7 x>-3$

$$
2 x^{2}-7 x=-3
$$

$$
2 x^{2}-7 x+3=0
$$

$$
\left(x-\frac{6}{2}\right)\left(x-\frac{1}{6}\right)=0
$$

$$
(x-3)(2 x-1)=0
$$

$$
x=3, \frac{1}{2} \text { critical values. }
$$

$$
3
$$

To Solve

1) find the critical salves by solving the quadratic equation.
2) Setup a number with the critical valves. Use the correct
3) Choose a test point in each section to find the correct answers.
4) $\frac{1}{2} x^{2}-8<0$

$$
\frac{1}{2} x^{2}-8=0
$$

$$
\frac{1}{2}\left(x^{2}-16\right)=0
$$

$$
\frac{1}{2}(x+4)(x-4)=0
$$

$$
x=-4,4 \text { critical values. }
$$

$$
\begin{gathered}
1 \\
\frac{1}{2} x^{2}-8<0 \\
\frac{1}{2}(-5)^{2}-8<0 \\
4 \frac{1}{2}<0 \\
\text { false }
\end{gathered}\left\{\begin{array}{cc}
\frac{1}{2} x^{2}-8<0 \\
\frac{1}{2}(0)^{2}-8<0 \\
-8<0 \\
\text { True } & 0
\end{array}\right.
$$

$$
-4<x<4
$$

3) $2 x^{2}-6 \geq 4 x$

$$
\begin{gathered}
2 x^{2}-6=4 x \\
-4 x
\end{gathered}
$$

$\begin{array}{ll}-3 x^{2}-4 x-6=0 \\ (1) & 2\left(x^{2}-2 x-3\right)=0 \\ 2(x-3)(x+1)=0\end{array}$

$$
x=3,-1 \text { critical values. }
$$

Pg. 346 \#5, 6, 7

