Solving Radical Equations

PRE-CALCULUS 11
 RADICALS
 SOLVING RADICAL EQUATIONS

A. Definitions

1. radical equation: an equation that contains at least one radical whose radicand contains a variable.
$3 \sqrt{x}=12$
$7 \sqrt{2 x-1}=3 \sqrt{x+5}-9$
2. extraneous root: a solution to a radical equation that when checked does not satisfy the original equation.
B. Solving Radical Equations

Solve the following algebra equations and verify the solutions.

$$
\begin{aligned}
& 3 x+\not \frac{2}{2}=-10 \\
& -2 x-4=4 x+6 \\
& \frac{3}{3} x=-\frac{12}{3} \\
& x=-4 \\
& \frac{\text { check }}{3 x+2}=-10 \\
& 3(-4)+2=-10 \\
& -12+2=-10 \\
& -10=-10 \checkmark \\
& -2 x-4=6 \\
& \begin{array}{r}
-\frac{2 x}{-\frac{1}{2}}=\frac{10}{-2} \\
x=-5
\end{array} \\
& \text { check } \\
& 2 x-4=4 x+6 \text {. } \\
& 2(-5)-4=4(-5)+6 \\
& -14=-14 v
\end{aligned}
$$

1. Solve each radical equation and verify the solution.
a) $3 \sqrt{x}=2$
To Solve
a) Isolate the root.

$$
\begin{aligned}
\frac{7 \sqrt{x}}{3} & =\frac{2}{3} \\
\sqrt{x} & =\frac{2}{3} \\
(\sqrt{x})^{2} & =\left(\frac{2}{3}\right)^{2} \\
x & =\frac{4}{9}
\end{aligned}
$$

b) To eliminate the root we square both sides.
c) Check for an extraneous root.

$$
\begin{aligned}
& \frac{\text { Check }}{3 \sqrt{x}}=2 \\
& 3 \sqrt{\left(\frac{4}{9}\right)}=2 . \\
& 3\left(\frac{2}{3}\right)=2 \\
& 2=2
\end{aligned}
$$

$$
\text { b) } \begin{gathered}
4 \sqrt{x+1}-5=3 \\
\frac{75}{5} \\
\frac{4 \sqrt{x+1}}{x}=\frac{8}{4} \\
(\sqrt{x+1})^{2}
\end{gathered}=(2)^{2} .
$$

checked

$$
\begin{gathered}
4 \sqrt{x+1}-5=3 \\
4 \sqrt{(3)+1}-5=3 \\
4 \sqrt{4}-5=3 \\
8-5=3 \\
3=3 \checkmark
\end{gathered}
$$

(c) $\sqrt{x+1}+6=3$

$$
\sqrt{x+1}+6=3
$$

$$
\begin{array}{lr}
(\sqrt{x+1})^{2}=(-3)^{2} & \sqrt{(8)+1}+6=3 \\
x+x=9 & \sqrt{9}+6=3 \\
x=8+6=3 \\
x & 3+6=3 * \\
\text { No Solution. Extraneous } & 9=1
\end{array}
$$

2. Determine whether the given value is a root of the equation.
a) $3 \sqrt{x-2}-1=8 ; x=11$

$$
\begin{aligned}
3 \sqrt{(11)-2}-1 & =8 \\
3 \sqrt{9}-1 & =8 \\
9-1 & =8 \\
8 & =8
\end{aligned}
$$

It is a coot.
b) $\sqrt{2 x-4}=\sqrt{3 x-5} ; \quad x=1$

$$
\begin{aligned}
& \sqrt{2(1)-4}=\sqrt{3(1)-5} \\
& \sqrt{2-4}=\sqrt{3-5}
\end{aligned}
$$

this is unsolvable, therefore it is considered an extraneous root

It is not a root.

Assignment: Pg. 145 \#4, 5, 6

