Solving Radical Equations Part 2

September-12-18

PRE-CALCULUS 11 RADICALS
 SOLVING RADICAL EQUATIONS PART 2

A. Definitions

1. radical equation: an equation that contains at least one radical whose radicand contains a variable.
2. extraneous root: a solution to a radical equation that when checked does not satisfy the original equation.
B. Solving Radical Equations

Solve the following algebra equations and verify the solutions.

1. $-\frac{1}{-6}+\sqrt{x}=5$
check
$(\sqrt{x})^{2}=(2)^{2}$
$3+\sqrt{x}=5$
$3+\sqrt{(4)}=5$
$3+2=5$
$5=5$

$$
x=4
$$

$$
5=5 \lambda
$$

2. $\frac{\sqrt{x+2}}{2}=3$
$2\left[\frac{\sqrt{x+2}}{2}=3\right]$

$$
(\sqrt{x+2})^{2}=(6)^{2}
$$

$$
x+\frac{7}{2}=36
$$

$$
x=34
$$

$\frac{\text { check }}{\frac{\sqrt{x+2}}{2}}=3$
$\frac{\sqrt{(34)+2}}{2}=3$

$$
\frac{\sqrt{36}}{2}=3
$$

$\frac{6}{2}=3$
$3=3 r$
3.
$\begin{aligned} 3 \sqrt{x} \\ -2 \sqrt{x}\end{aligned} \quad-4=\begin{aligned} & 2 \sqrt{x} \\ & -2 \sqrt{x}\end{aligned}$

$$
\sqrt{x}+\frac{y}{4}=1_{-4}
$$

Since the roots are like roots we can combine them.

$$
(\sqrt{x})^{2}=(-3)^{2}
$$

$$
x=9 \pi
$$

$$
\begin{aligned}
& \text { check } \\
& \begin{aligned}
3 \sqrt{x}+4 & =2 \sqrt{x}+1 \\
3 \sqrt{(9)}+4 & =2 \sqrt{(9)}+1 \\
9+4 & =6+1
\end{aligned}
\end{aligned}
$$

extraneous root
No Solution
\square
4. $\begin{aligned} \sqrt{x-1} & +\sqrt{2 x+3}=0 \\ -\sqrt{2 x+3} & =-\sqrt{2 x+3}\end{aligned}$ Since the roots are not like roots we cant combine them. Instead move the roots to opposite sides of the equation.

$$
\begin{aligned}
& (\sqrt{x-1})^{2}=(-\sqrt{2 x+3})^{2} \\
& x-1=1(2 x+3) \\
& -x-1=2 x+3 \\
& -2 x \\
& \frac{-x-1}{x-1}=3 \\
& \frac{x}{-1}=\frac{4}{-1} \\
& x=-4
\end{aligned}
$$

No Solution.

