# PRE-CALCULUS 11 <br> QUADRATIC FUNCTIONS <br> THE FACTORED FORM OF A QUADRATIC FUNCTION 

## A. Definitions

1. general form: any quadratic function that can be written in the form:

$$
y=a x^{2}+b x+c \text { or } f(x)=a x^{2}+b x+c .
$$

2. standard form: any quadratic function that can be written in the form:

$$
y=a(x-p)^{2}+q \text { or } f(x)=a(x-p)^{2}+q
$$

3. factored form: any quadratic function that can be written in the form:

$$
y=a\left(x-r_{1}\right)\left(x-r_{2}\right) \text { or } f(x)=a\left(x-r_{1}\right)\left(x-r_{2}\right)
$$

## B. The Factored Form of a Quadratic Function

The factored form of the quadratic function $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$, easily allows us to find the x-intercepts of the function as well as the expansion/compression value and whether the function is upright or inverted.

1) Change the following function into the factored form and then describe the characteristics of the graph.
a) $y=2 x^{2}+12 x+10$
$-x-\operatorname{int}(-5,0) d(-1,0)$
$y=2\left(x^{2}+6 x+5\right)$
$y=2(x+5)(x+1)$

- upright $\ddagger$ vertically expanded.
b) $y=-\frac{1}{3}\left(x+\frac{3}{2}\right)^{2}+\frac{27}{4}$

$$
y=-\frac{1}{3}\left(x+\frac{3}{2}\right)\left(x+\frac{3}{2}\right)+\frac{27}{4}
$$

$-x-\operatorname{int}(-6,0) \pm(3,0)$
$y=-\frac{1}{3}\left(x^{2}+3 x+\frac{9}{4}\right)+\frac{27}{4}$

- inverted \&
$y=-\frac{1}{3} x^{2}-x-\frac{3}{4}+\frac{27}{4}$ vertically compressed.
$y=-\frac{1}{3} x^{2}-x+6$
$y=-\frac{1}{3}\left(x^{2}+3 x-18\right)$
$y=-\frac{1}{3}(x+6)(x-3)$

2) Write the factored form equation $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$ of a quadratic function that has zeros of -3 and 5 and passes through the point $A(2,-10)$.

$$
\begin{aligned}
& \text { roots } \\
& y=a\left(x-r_{1}\right)\left(x-r_{2}\right) \\
& y=a(x+3)(x-5) \\
& (-10)=a((2)+3)((2)-5) \\
& -10=a(5)(-3) \\
& \frac{-10}{-15}=\frac{-15}{715} a
\end{aligned}
$$

$$
y=\frac{2}{3}(x+3)(x-5)
$$

$$
a=\frac{2}{3}
$$

3) Write the general form equation $y=a x^{2}+b x+c$ of a quadratic function that has
zeros of 1 and 7 and passes through the point $B(3,16)$.

$$
\begin{aligned}
& \text { roots } \\
& y=a\left(x-r_{1}\right)\left(x-r_{2}\right) \\
& y=a(x-1)(x-7) \\
& (16)=a((3)-1)((3)-7) \\
& 16=a(2)(-4) \\
& \frac{16}{-8}=\frac{-8}{-8} a \\
& a
\end{aligned}
$$

$$
\begin{aligned}
& y=-2(x-1)(x-7) \\
& y=-2\left(x^{2}-8 x+7\right) \\
& y=-2 x^{2}+16 x-14
\end{aligned}
$$

4) Write the factored form equation $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$ of a quadratic function that has a vertex of $\left(1,-1^{q} 8\right)$ and an $x$-intercept of $(4,0)$.

$$
\begin{aligned}
y & =a(x-p)^{2}+q \\
y & =a(x-1)^{2}-18 \\
(0) & =a((4)-1)^{2}-18 \\
0 & =9 a-18 \\
+18 & =9 a \\
\frac{18}{9} & =\frac{18}{9} \\
a & =2
\end{aligned}
$$

$$
y=2(x-1)^{2}-18
$$

$$
y=2(x-1)(x-1)-18
$$

$$
y=2\left(x^{2}-2 x+1\right)-18
$$

$$
-\left.4\right|_{-2} ^{-8} / 2
$$

$$
y=2 x^{2}-4 x+2-18
$$

