PRE-CALCULUS 11
 QUADRATIC FUNCTIONS
 THE GRAPHING FORM OF A QUADRATIC FUNCTION

A. Definitions

1. general form: any quadratic function that can be written in the form:

$$
y=a x^{2}+b x+c \text { or } f(x)=a x^{2}+b x+c .
$$

2. standard form: any quadratic function that can be written in the form:

$$
y=a(x-p)^{2}+q \text { or } f(x)=a(x-p)^{2}+q
$$

3. x-intercept: the place where the shape crosses the x-axis. These are also referred to as the roots or zeros of the function.
4. y-intercept: the place where the shape crosses the y-axis. In the general form of the quadratic function the c value represents the y-intercept.
5. vertex: the highest or lowest point of a quadratic function
6. axis of symmetry: the imaginary line, through the vertex, that divides the quadratic function into two perfect halves
B. The Standard Form (Graphing Form) of a Quadratic Function

Remember from last class that when translating a quadratic function, the values of a, p and q represent the specific changes that happen to the Parent Graph $y=x^{2}$

$$
\begin{aligned}
& y=a x^{2}: \text { invert, vertically compress, vertically expand } \\
& y=(x-p)^{2} \text { : shifts the vertex left or right } \\
& y=x^{2}+q \text { : shifts the vertex up or down. }
\end{aligned}
$$

In Standard Form (Graphing Form) of the quadratic function $y=a(x-p)^{2}+q$, the values still represent the same changes to the Parent Graph $y=x^{2}$.

$$
\begin{aligned}
& a=\text { invert, vertically compress, vertically expand } \\
& p=\text { shifts vertex left or right. } \\
& q=\text { shifts vertex up or down. }
\end{aligned}
$$

Additionally, the values of (p, q) form the coordinates of the vertex of the parabola.
C. Examples

1) Determine the coordinates of the vertex for the following quadratic functions.
a) $y=(x-4)^{2}-1$
$a=1$

$$
\begin{aligned}
& p=4 \\
& q=-1
\end{aligned}
$$

b) $y=2 x^{2}+6$

$$
\begin{aligned}
& a=2 \\
& p=0 \\
& q=6
\end{aligned}
$$

$$
\text { Vertex }(0,6)
$$

c) $y=-\frac{1}{2}(x+7)^{2}$
$a=-\frac{1}{2}$
vertex $(-7,0)$
$p=-7$
$q=0$
d) $y=-0.4(x+2.8)^{2}+4.9$

$$
\begin{aligned}
& a=-0.4 \\
& p=-2.8
\end{aligned}
$$

$$
\text { Vertex }(-2.8,4.9
$$

2) Describe the transformation that is applied to the Parent Graph $y=x^{2}$, to get the following function.
a) $y=-2 x^{2}-3$
$a=-2$
$p=0$
$g=-3$

- inverted \& vertical expansion
- vertex x moves to $(0,-3)$
b) $y=\frac{1}{4}(x+1)^{2}+5$
- vertical compression
$a=\frac{1}{4}$
- vertex moves to $(-1,5)$
$q=5$.

