The Graphing Form of a Quadratic Function Part 3

PRE-CALCULUS 11
 QUADRATIC FUNCTIONS
 THE GRAPHING FORM OF A QUADRATIC FUNCTION PART 3

A. Definitions

1. general form: any quadratic function that can be written in the form:

$$
y=a x^{2}+b x+c \text { or } f(x)=a x^{2}+b x+c .
$$

2. standard form: any quadratic function that can be written in the form:

$$
y=a(x-p)^{2}+q \text { or } f(x)=a(x-p)^{2}+q
$$

3. x-intercept: the place where the shape crosses the x-axis. These are also referred to as the roots or zeros of the function.
4. y-intercept: the place where the shape crosses the y-axis. In the general form of the quadratic function the c value represents the y-intercept.
5. vertex: the highest or lowest point of a quadratic function
6. axis of symmetry: the imaginary line, through the vertex, that divides the quadratic function into two perfect halves
B. The Standard Form (Graphing Form) of a Quadratic Function
1) Graph the following quadratic functions. Then state the domain and range.
a) $y=(x-2)^{2}-3$
$a=1$
$p=2$
$q=-3$

Domain: $x \in R$.
Range : $y \geq-3$

b) $y=\frac{1}{2}(x+3)^{2}-5$
$a=\frac{1}{2}$
$p=-3$
$q=-5$
vertex $(-3,-5)$
$\left\{\begin{array}{l}\text { Over 1, UpI }\left(\frac{1}{2}\right)=\frac{1}{2} \\ \text { Over } 2, U p \text { U }\left(\frac{1}{2}\right)=2\end{array}\right.$

Domain: $x \in R$.
Range: $y \geq-5$.
C) $y=-2(x-1)^{2}+6$

4) Write the equation of a quadratic function with the given characteristics:
$p q$
Vertex $(2,-3)$

$$
\begin{aligned}
y & =a(x-p)^{2}+q \\
y & =a(x-2)^{2}-3 \\
(5) & =a((4)-2)^{2}-3 \\
5 & =a(2)^{2}-3 \\
5 & =4 a-\frac{3}{3} \\
+3 & =4 a \\
\frac{8}{4} & =\frac{4}{4} \\
a & =2
\end{aligned}
$$

$$
y=2(x-2)^{2}-3
$$

5) Determine the equation of the quadratic function.
a)

vertex $\left(\begin{array}{ll}p & q \\ 2,5\end{array}\right)$
point $\left(\begin{array}{l}x \\ 0, \\ 0\end{array}, i\right)$
$y=a(x-p)^{2}+q$
$y=a(x-2)^{2}+5$
$(1)=a((0)-2)^{2}+5$
$1=a(-2)^{2}+5$
$\frac{1}{-5}=4 a+5$
$\frac{-4}{4}=\frac{4}{4} a$.
$a=-1$
b)

vertex $\left(\begin{array}{cc}p & q \\ -3 & -6\end{array}\right)$
point ($1, \frac{y}{2}$) $y=a(x-p)^{2}+q$ $y=a(x+3)^{2}-6$ $(2)=a((1)+3)^{2}-6$
$2=a(4)^{2}-6$
$\underset{+6}{2}=16 a-6$
$\frac{8}{16}=\frac{14}{16} a$
$a=\frac{1}{2}$
