PRE-CALCULUS 11

QUADRATIC EQUATIONS
THE QUADRATIC FORMULA
A. Definitions

1. quadratic formula: a formula used to determine the solutions) to a quadratic equation. The solution of a quadratic equation in the form $a x^{2}+b x+c=0$, where a, b and c are constants and $a \neq 0$, is given by the formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

2. roots/zeros: the answers) to a quadratic equation.
B. Solving Quadratic Equations Using the Quadratic Formula
1) Solve the following quadratic equations (as exact values).
a) $x^{2}+4 x-1=0$
$a=1, b=4, c=-1$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-(4) \pm \sqrt{(4)^{2}-4(1)(-1)}}{2(1)}$
$=\frac{-4 \pm \sqrt{20}}{2} \sqrt{(4) \cdot \sqrt{5}}=\frac{-4)^{\div 2} \pm(2)^{\div 2} \sqrt{5}}{(2)^{\div 2}}=-2 \pm \sqrt{5}$
b) $x^{2}-x+4=0$

$$
a=1, b=-1, c=4
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(4)}}{2(1)}
$$

$$
=\frac{1 \pm \sqrt{-15)^{-1}}}{2} \underbrace{}_{\substack{\text { square } \\ \text { out } \\ \text { of } \\ \text { negative } \\ \\ \\ \\ \text { (unsduedole). }}}
$$

2) Find the roots of the following quadratic equation. Give your answer as an exact value in simplest form and to the nearest hundredth.

$$
\begin{aligned}
& 4 x^{2}=3(4 x+5) \\
& 4 x^{2}=12 x+15 \\
&-12 x \\
&-15 \\
& 4 x^{2}-12 x-15=0 \\
& a=4, b=-12, c=-15 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(4)(-15)}}{2(4) \cdot} \\
&=\frac{12 \pm \sqrt{384}}{8} \sqrt{(64} \cdot \sqrt{6} \\
&=\frac{12) \pm 8) \sqrt{6}}{(8) \cdot 4} \\
&=\frac{3 \pm 2 \sqrt{6}}{2}
\end{aligned}
$$

3) An Olympic diver diving off a 3 m springboard is defined by the formula $h=-4.9 t^{2}+8.8 t+3$, where h represents the height in metres and t represents the

$$
\begin{aligned}
& \text { time in seconds after leaving the board. How long does it take a diver to reach the } \\
& \text { water? Round your answer to nearest tenth. } \\
& \text { Height. } \underbrace{3 m}_{\text {Time. }} \\
& h=-4.9 t^{2}+8.8 t+3 \\
& 0=-4.9 t^{2}+8.8 t+3 \\
& a=-4.9, b=8.8, c=3 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(8.8) \pm \sqrt{(8.8)^{2}-4(-4.9)(3)}}{2(-4.9)} \\
& =\frac{-8.8 \pm \sqrt{136.24}}{-9.8} \\
& x=\frac{-8.8+\sqrt{136.24}}{-9.8} \\
& x=\frac{-8.8-\sqrt{136.24}}{-9.8} \\
& x=-2 \sqrt{3} \ldots \quad x=2.088 \ldots \\
& \text { cant have } \\
& \text { ne acre } \\
& x=2.1 \text { seconds. }
\end{aligned}
$$

Assignment: The Quadratic Formula Assignment \#1-8

156 Quadratic Functions and Equations Lesson \#5: The Quadratic Formula

Assignment

1. Solve the equation $x^{2}-3 x-10=0$ by using;
a) inspection
b) the quadratic formula
2. Solve the equation $4 x^{2}-11 x-3=0$ by using;
a) decomposition
b) the quadratic formula
3. Find the exact roots of the equation $6 x^{2}+5 x+1=0$ by using;
a) graphing
b) the quadratic formuia
4. Find the roots of the following quadratic equations (to the nearest tenth) using the quadratic formula.
a) $2 x^{2}+x-4=0$
b) $2 x^{2}-3 x-4=0$
c) $10 t^{2}=7 t+1$
5. Solve the following quadratic equations (as exact values) using the quadratic formula.
a) $x^{2}-10 x-15=0$
b) $x^{2}+6 x+7=0$
c) $3 x^{2}-12 x+11=0$
6. Find the zeros of the following quadratic functions Give answers as exact values in simplest form and to the nearest hundredth.
a) $f(x)=x^{2}+20 x+15$
b) $f(x)=5 x^{2}+12 x-5$
7. The roots of the quadratic equation $d x^{2}+e x^{\prime}+f=0$ are
A. $x=\frac{e \pm \sqrt{e^{2}-4 d f}}{2 d}$
B. $x=\frac{-e \pm \sqrt{e^{2}-4 d f}}{2 d}$
C. $x=\frac{e \pm \sqrt{e^{2}+4 d f}}{2 d}$
D. $x=\frac{-e \pm \sqrt{e^{2}+4 d f}}{2 d}$
8. The zeros of the quadratic function $f(x)=6 x^{2}+2 x-1$ are
A. $\frac{-1 \pm \sqrt{14}}{6}$
B. $\frac{-1 \pm 2 \sqrt{7}}{6}$
C. $\frac{-1 \pm \sqrt{7}}{6}$
D. $\frac{-2 \pm \sqrt{7}}{6}$
9. The quadratic equation $2 x^{2}+15 x+p=0$ has a positive root of $-\frac{1}{2}$ when p has the whole number value of \qquad .
(Record your answer in the numerical response box from left to right)

Answer Key

1. a) $-2,5$
b) $-2,5$
2. a) $-\frac{1}{3},-\frac{1}{2}$
b) $-\frac{1}{3},-\frac{1}{2}$
3. a) $-\frac{1}{4}, 3$
b) $-\frac{1}{4}, 3$
4. a) $5 \pm 2 \sqrt{10}$
b) $-3 \pm \sqrt{2}$
5. e) $-10 \pm \sqrt{85}$
$-0.78,-19.22$
6. B
7. C
8. a) $-1.7,1.2$
b) $-0.9,2.4$
e) $-0.1,0.8$
c) $\frac{6 \pm \sqrt{3}}{3}$
b) $\frac{-6 \pm \sqrt{61}}{5} \quad-2.76,0.36$
9. \square
