PRE-CALCULUS 11 QUADRATIC EQUATIONS THE QUADRATIC FORMULA

A. Definitions

1. **quadratic formula:** a formula used to determine the solution(s) to a quadratic equation. The solution of a quadratic equation in the form $ax^2 + bx + c = 0$, where a,b and c are constants and $a \ne 0$, is given by the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 2. roots/zeros: the answer(s) to a quadratic equation.
- B. Solving Quadratic Equations Using the Quadratic Formula
 - 1) Solve the following quadratic equations (as exact values).

a)
$$x^{2} + 4x - 1 = 0$$

 $\alpha = 1, b = 4, c = -1$

$$X = \frac{-b \pm \sqrt{b^{2} - 4ac}}{aa}$$

$$= \frac{-(4) \pm \sqrt{(4)^{2} - 4(1)x - 1}}{a(1)}$$

$$= -\frac{4 \pm \sqrt{ao}}{a}$$

$$= \frac{-4 \pm \sqrt{ao}}{a}$$

$$= \frac{-2 \pm \sqrt{5}}{a}$$

b)
$$x^{2}-x+4=0$$
 $\alpha=1, b=-1, c=4$

$$X = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(4)}}{2(1)}$$

$$= \frac{1 \pm \sqrt{15}}{2} \text{ Square}$$
No Solution.

2) Find the roots of the following quadratic equation. Give your answer as an exact value in simplest form and to the nearest hundredth.

$$4x^{2} = 3(4x+5)$$

$$4x^{2} = 13x + 165$$

$$-12x$$

$$-155$$

$$4x^{2} - 13x - 15 = 0$$

$$0 = 4, b = -12, c = -15$$

$$0 = -12, b = -12, c = -15$$

$$0 = -12, c =$$

3) An Olympic diver diving off a 3 m springboard is defined by the formula $h = -4.9t^2 + 8.8t + 3$, where h represents the height in metres and t represents the time in seconds after leaving the board. How long does it take a diver to reach the

Assignment: The Quadratic Formula Assignment #1 – 8

Assignment

- 1. Solve the equation $x^2 3x 10 = 0$ by using;
 - a) inspection

b) the quadratic formula

- 2. Solve the equation $4x^2 11x 3 = 0$ by using;
 - a) decomposition

b) the quadratic formula

- 3. Find the exact roots of the equation $6x^2 + 5x + 1 = 0$ by using;
 - a) graphing

b) the quadratic formula

4. Find the roots of the following quadratic equations (to the nearest tenth) using the quadratic formula.

a)
$$2x^2 + x - 4 = 0$$

a)
$$2x^2 + x - 4 = 0$$
 b) $2x^2 - 3x - 4 = 0$ c) $10t^2 = 7t + 1$

c)
$$10t^2 = 7t + 1$$

5. Solve the following quadratic equations (as exact values) using the quadratic formula.

a)
$$x^2 - 10x - 15 = 0$$
 b) $x^2 + 6x + 7 = 0$ c) $3x^2 - 12x + 11 = 0$

b)
$$x^2 + 6x + 7 = 0$$

c)
$$3x^2 - 12x + 11 = 0$$

Find the zeros of the following quadratic functions Give answers as exact values in simplest form and to the nearest hundredth.

a)
$$f(x) = x^2 + 20x + 15$$

b)
$$f(x) = 5x^2 + 12x - 5$$

7. The roots of the quadratic equation $dx^2 + ex + f = 0$ are

$$A. \quad x = \frac{e \pm \sqrt{e^2 - 4df}}{2d}$$

$$\mathbf{B.} \quad x = \frac{-e \pm \sqrt{e^2 - 4df}}{2d}$$

$$C. \quad x = \frac{e \pm \sqrt{e^2 + 4df}}{2d}$$

$$\mathbf{D.} \quad x = \frac{-e \pm \sqrt{e^2 + 4df}}{2d}$$

8. The zeros of the quadratic function $f(x) = 6x^2 + 2x - 1$ are

A.
$$\frac{-1 \pm \sqrt{14}}{6}$$

B.
$$\frac{-1 \pm 2\sqrt{7}}{6}$$

C.
$$\frac{-1 \pm \sqrt{7}}{6}$$

D.
$$\frac{-2 \pm \sqrt{7}}{6}$$

9. The quadratic equation $2x^2 + 15x + p = 0$ has a positive root of $-\frac{1}{2}$ when p has the whole number value of ___

(Record your answer in the numerical response box from left to right)

Answer Key

$$1.8) -2.5$$

1. a) -2,5 b) -2,5 2. a)
$$-\frac{1}{4}$$
, 3 b) $-\frac{1}{4}$, 3

b)
$$-\frac{1}{4}$$
,

3. a)
$$-\frac{1}{3}, -\frac{1}{2}$$

b)
$$-\frac{1}{3}, -\frac{1}{2}$$

5. a)
$$5 \pm 2\sqrt{10}$$

c)
$$\frac{6 \pm \sqrt{3}}{3}$$

5. a)
$$-10 \pm \sqrt{85}$$

3. a)
$$-\frac{1}{3}$$
, $-\frac{1}{2}$ b) $-\frac{1}{3}$, $-\frac{1}{2}$ 4. a) -1.7, 1.2 b) -0.9, 2.4 e) -0.1, 0.8
5. a) $5 \pm 2\sqrt{10}$ b) $-3 \pm \sqrt{2}$ c) $\frac{6 \pm \sqrt{3}}{3}$
6. a) $-10 \pm \sqrt{85}$ -0.78, -19.22 b) $\frac{-6 \pm \sqrt{61}}{5}$ -2.76, 0.36
7. B 8. C 9. 7