Transforming the Graph of a Quadratic Function
September-25-18
10:16 AM

PRE-CALCULUS 11
QUADRATIC FUNCTIONS
TRANSFORMING THE GRAPH OF A QUADRATIC FUNCTION

A. The Different Properties of a Quadratic Function

The simplest quadratic function of all is the function $y=x^{2}$ and is referred to as The Parent Graph. All other transposed parabolas are based on this simplest one.

$$
y=x^{2}
$$

Vertex (0,0)

Left or Right	Up
1 Right	1 Up.
1 Left	1 Up
2 Right	4 Up.
2 Left	4 Up.
3 Right	9 Up.
3 Left.	9 Up.

Comparing the function $y=x^{2}$ to the function $y=(x-p)^{2}$.

Function	Value of p	Opening Up/Down	Vertex	Axis of Symmetry	Congruent to $y=x^{2} ?$
$y=x^{2}$	0	Up	$(0,0)$	$X=0$	Yes
$y=(x-4)^{2}$	4	Up.	$(4,0)$	$X=4$	Yes
$y=(x+4)^{2}$	-4	Up.	$(-4,0)$.	$X=-4$	Yes.
$y=(x-7)^{2}$	7	Up.	$(7,0)$	$X=7$	Yes
$y=(x+7)^{2}$	-7	Up.	$(-7,0)$	$X=-7$	Yes.

What does the " p " value do to the vertex of the function?
The "p" value shifts the vertex left or right

Graph the following functions:

$$
y=(x-3)^{2} \text { and } y=(x+3)^{2}
$$

$y=(x-3)^{2}$
$p=3$
vertex $(3,0)$
Over I, up)
Over 2, up 4
$y=(x+3)^{2}$
$p=-3$
vertex $(-3,0)$
Over I, UpI Over 2, Up 4

Comparing the function $y=x^{2}$ to the function $y=x^{2}+q$.

Function	Value of q	Opening Up/Down	Vertex	Axis of Symmetry	Congruent to $y=x^{2} ?$
$y=x^{2}$	0	Up	$(0,0)$	$x=0$	Yes
$y=x^{2}+4$	4	Up.	$(0,4)$	$x=0$	Yes.
$y=x^{2}-4$	-4	$U p$	$(0,-4)$	$x=0$	Yes
$y=x^{2}+7$	7	$U p$	$(0,7)$	$x=0$	Yes.
$y=x^{2}-7$	-7	$U p$	$(0,-7)$	$x=0$	Yes

What does the " q " value do to the vertex of the function?
The " q " value shifts the vertex up or down.

Graph the following functions:

$$
y=x^{2}+3 \text { and } y=x^{2}-3
$$

$y=x^{2}+3$
$q=3$
vertex $(0,3)$.
Over 1, Up 1
Over 2, Up 4
$y=x^{2}-3$
$q=-3$
vertex $(0,-3)$
Over 1, Up I
Over 2, Up 4

Comparing the function $y=x^{2}$ to the function $y=a x^{2}$.

Function	Value of a	Opening Up/Down	Vertex	Axis of Symmetry	Congruent to $y=x^{2} ?$
$y=x^{2}$	1	Up.	$(0,0)$	$x=0$	Yes
$y=-x^{2}$	-1	Down	$(0,0)$	$X=0$	Yes but inverted
$y=3 x^{2}$	3	Up	$(0,0)$	$X=0$	No it is Vertically expanded.
$y=-3 x^{2}$	-3	Down	$(0,0)$.	$X=0$	No is inverted and vertically expanded.
$y=\frac{1}{3} x^{2}$	$\frac{1}{3}$	$U p$	$(0,0)$	$X=0$	No it is vertically compressed.

What does the "a" value do to the graph of the function?
The "a" value causes the graph to be vertically compressed,
vertically expanded, or inverted, $a>1$ vertical expansion $0<a<1$ vertical compression
$a<0$ inverted.
Graph the following functions:

$$
y=2 x^{2}, y=-2 x^{2} \text { and } y=\frac{1}{2} x^{2}
$$

$y=2 x^{2}$
$a=2$.
vertex $(0,0)$
Over $\backslash, \begin{aligned} & \cup p \backslash(2)=2 \\ & \cup 4(2)=8\end{aligned}$
Over 2 , up $4(2)=8$
$y=-2 x^{2}$.
$a=-2$
vertex.
Over 1 , up $(-2)=-2$
Over 2, up $4(-2)=-8$

$$
\begin{aligned}
& y=\frac{1}{2} x^{2} \\
& a=\frac{1}{2}
\end{aligned}
$$

Over $1, \cup p \backslash\left(\frac{1}{2}\right)=\frac{1}{2}$.

Over 2, up $4\left(\frac{1}{2}\right)=2$.

B. Translating Functions

The graph of $y=x^{2}$ is translated as below. Without graphing, write the equation of the graph in its new position.

1) a translation of 10 units down.

$$
\begin{aligned}
& q=-10 \\
& y=x^{2}-10
\end{aligned}
$$

2) a translation of 4 units to the right.

3) a vertical compression of $\frac{1}{5}$.

$$
\begin{aligned}
& a=\frac{1}{5} \\
& y=\frac{1}{5} x^{2}
\end{aligned}
$$

4) an vertical expansion of 6 , and reflected in the x-axis.

$$
\begin{aligned}
& a=-6 \\
& y=-6 x^{2}
\end{aligned}
$$

