Transforming the Graph of a Quadratic Function

September-25-18 10:16 AM

PRE-CALCULUS 11 QUADRATIC FUNCTIONS TRANSFORMING THE GRAPH OF A QUADRATIC FUNCTION

A. The Different Properties of a Quadratic Function

The simplest quadratic function of all is the function $y = x^2$ and is referred to as **The Parent Graph**. All other transposed parabolas are based on this simplest one.

Vertex (♥, ♥)

Left or Right	Up		
1 Right	l Up.		
Left	l Up		
2 Right	4 Up.		
2 Left	4 Up.		
3 Right	9 Up.		
3 Left.	9 Up.		

Comparing the function $y = x^2$ to the function $y = (x - p)^2$.

Function	Value of p	Opening Up/Down	Vertex	Axis of Symmetry	Congruent to $y = x^2$?
$y = x^2$	0	UP	(0,0)	X = 0	Yes
$y = (x-4)^2$	4	Up.	(4,0)	X = 4	Yes
$y = (x+4)^2$	-4	Up.	(-4,0).	X = -4	Yes.
$y = (x - 7)^2$	7	Up.	(7,0)	X = 7	Yes
$y = (x+7)^2$	-7	Up.	(-7,0)	X = -7	Yes.

What does the "p" value do to the vertex of the function?

Graph the following functions:

$$y = (x-3)^2$$
 and $y = (x+3)^2$

$$y = (x-3)^{2}$$

 $p = 3$
 $vertex(3,0)$
 $vertex(3,0)$
 $vertex(3,0)$
 $vertex(3,0)$
 $vertex(-3,0)$
 $vertex(-3,0)$
 $vertex(3,0)$
 $vertex(3,0)$

Comparing the function $y = x^2$ to the function $y = x^2 + q$.

Function	Value of q	Opening Up/Down	Vertex	Axis of Symmetry	Congruent to $y = x^2$?
$y = x^2$	0	UP	(0,0)	X = 0	Yes
$y = x^2 + 4$	4	Up.	(0,4)	X = 0	Yes.
$y = x^2 - 4$	-4	Up	(01-4)	X = 0	Yes
$y = x^2 + 7$	7	Up	(F, U)	X = 0	Yes.
$y = x^2 - 7$	-7	Up	(0,-7)	X = 0	Yes

What does the "q" value do to the vertex of the function?

Graph the following functions:

$$y = x^2 + 3$$
 and $y = x^2 - 3$

 $V = X^{2} + 3$ Q = 3 Vertex (0,3). Vertex (0,3). Vertex (0,3). Vertex (0,3) Vertex (0,-3) Vertex (0,-3) Vertex (0,-3) Vertex (0,0)

Comparing the function $y = x^2$ to the function $y = ax^2$.

Function	Value of a	Opening Up/Down	Vertex	Axis of Symmetry	Congruent to $y = x^2$?
$y = x^2$	1	Up.	(0,0)	X=0	Yes
$y = -x^2$	-	Down	(0,0)	X = 0	Yes but inverted
$y = 3x^2$	3	UP	(0,0)	X = 0	No It is vertically expanded. No It is inverted
$y = -3x^2$	-3	Down	(0,0)	X = 0	and vertically expanded
$y = \frac{1}{3}x^2$	<u> </u> 3	Up	(0,0)	X = 0	No it is vertically compressed.

What does the "a" value do to the graph of the function?

The "a" value causes the graph to be vertically compressed, vertically expanded, or inverted, a>1 vertical expansion 0< a< 1 vertical compression a< 0 inverted.

Graph the following functions:

$$y = 2x^2$$
, $y = -2x^2$ and $y = \frac{1}{2}x^2$

 $y = 2x^2$ vertex (0,0) Over 2) Up 1(2)=2 Over 2) Up 4(2)=8)=-5x2. Q=-3 vertex.

Over 1, Up 1(-2) = -2 Over 2, Up 4(-2) = -B

B. Translating Functions

The graph of $y = x^2$ is translated as below. Without graphing, write the equation of the graph in its new position.

1) a translation of 10 units down.

$$Q = -1b$$

$$V = X^2 - 10$$

2) a translation of 4 units to the right.

$$P = 4$$

$$V = (X - 4)^2$$

3) a vertical compression of $\frac{1}{5}$.

$$A = \frac{1}{5}$$

$$y = \frac{1}{5} \times x^{2}$$

4) an vertical expansion of 6, and reflected in the x-axis.

$$\alpha = -6$$

$$y = -6x^{2}$$

Assignment: Pg. 270 #2 & 3